Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Separation of oily pollution from water and wastewater by low cost and reusable composite based on natural fibers
In this study, the activated carbon powder treated on the natural cotton fibers by a solvo-thermal method. Acetone and hydrazine used as solvent. The porous, low cost and hydrocarbon loving adsorbents obtained. Ultrasonic waves applied for homogeneous distribution of powder. Adsorbent characterization performed by FTIR and SEM analysis. Batch adsorption experiments carried out to remove the spill of motor engine oil on the water. Adsorption, desorption and reuse of the adsorbent were done in 5 steps. The highest adsorption capacity was 40.2 g/g. After 5 replicate of adsorbent reuse, the adsorption efficiency and recovery percentage were about 90%. Continuous experiments performed by 500 ml of two petrochemical and refinery wastewater samples with 2 g of adsorbent at two different flowrates. The results showed that removal percentage of oil achieved to 96%, in the inlet concentration less than 40 g oil per each gram of adsorbent. By increasing the amount of inlet oil above 40 g/g, the adsorption efficiency decreased. For these wastewater, by increasing the amount of adsorbent from 2g to 3 g, the oil pollution was completely absorbed. Therefore, this composite with acceptable performance can use for spill remove and continuous removal of oil pollutions from water and wastewater
Separation of oily pollution from water and wastewater by low cost and reusable composite based on natural fibers
In this study, the activated carbon powder treated on the natural cotton fibers by a solvo-thermal method. Acetone and hydrazine used as solvent. The porous, low cost and hydrocarbon loving adsorbents obtained. Ultrasonic waves applied for homogeneous distribution of powder. Adsorbent characterization performed by FTIR and SEM analysis. Batch adsorption experiments carried out to remove the spill of motor engine oil on the water. Adsorption, desorption and reuse of the adsorbent were done in 5 steps. The highest adsorption capacity was 40.2 g/g. After 5 replicate of adsorbent reuse, the adsorption efficiency and recovery percentage were about 90%. Continuous experiments performed by 500 ml of two petrochemical and refinery wastewater samples with 2 g of adsorbent at two different flowrates. The results showed that removal percentage of oil achieved to 96%, in the inlet concentration less than 40 g oil per each gram of adsorbent. By increasing the amount of inlet oil above 40 g/g, the adsorption efficiency decreased. For these wastewater, by increasing the amount of adsorbent from 2g to 3 g, the oil pollution was completely absorbed. Therefore, this composite with acceptable performance can use for spill remove and continuous removal of oil pollutions from water and wastewater
Separation of oily pollution from water and wastewater by low cost and reusable composite based on natural fibers
Masoomeh Mirzaei (Autor:in)
2021
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
British Library Online Contents | 2017
|Oily Wastewater Treatment Using Adsorption
Springer Verlag | 2024
|Company news - Anti-pollution award for biomechanical oily water separator
Online Contents | 2001
Bioinspired cellulose-based membranes in oily wastewater treatment
Springer Verlag | 2022
|