Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Building Energy Model for Mexican Energy Standard Verification Using Physics-Based Open Studio SGSAVE Software Simulation
The aim of the project detailed in this article was the development of an energy model for verifying Mexican energy standard compliance using the energy simulation engine EnergyPlus through Open Studio SGSAVE software. We aimed to improve the tool’s ability to increase the comfort of social housing through the implementation of the standard in a practical digital tool. The project followed a four-stage methodology. The first stage was the development of climatic zoning for the country. The second stage involved the research and classification of the main traditional construction systems. The third stage was extensive research on the actual state of Mexican energy verification and its legal framework. The standard studied was NOM-020-ENER-2011. The final stage was testing the verification method by introducing the energy Mexican rule into the proposed software with the zoning and construction systems catalogue. A base model of a social housing type was developed in the software. Then, this model was improved to respond to each representative climate zone. Both models were simulated and we verified if they met the requirements. The results were contrasted for determining if there were energy savings. As a conclusion, we found that the actual energy standard of Mexico needs to be changed and we suggest the implementation of the energy simulation engine Energy Plus for creating more complete reports. This will help with the practical improvements in social housing conditions.
Building Energy Model for Mexican Energy Standard Verification Using Physics-Based Open Studio SGSAVE Software Simulation
The aim of the project detailed in this article was the development of an energy model for verifying Mexican energy standard compliance using the energy simulation engine EnergyPlus through Open Studio SGSAVE software. We aimed to improve the tool’s ability to increase the comfort of social housing through the implementation of the standard in a practical digital tool. The project followed a four-stage methodology. The first stage was the development of climatic zoning for the country. The second stage involved the research and classification of the main traditional construction systems. The third stage was extensive research on the actual state of Mexican energy verification and its legal framework. The standard studied was NOM-020-ENER-2011. The final stage was testing the verification method by introducing the energy Mexican rule into the proposed software with the zoning and construction systems catalogue. A base model of a social housing type was developed in the software. Then, this model was improved to respond to each representative climate zone. Both models were simulated and we verified if they met the requirements. The results were contrasted for determining if there were energy savings. As a conclusion, we found that the actual energy standard of Mexico needs to be changed and we suggest the implementation of the energy simulation engine Energy Plus for creating more complete reports. This will help with the practical improvements in social housing conditions.
Building Energy Model for Mexican Energy Standard Verification Using Physics-Based Open Studio SGSAVE Software Simulation
Andrés Jonathan Guízar Dena (Autor:in) / Miguel Ángel Pascual (Autor:in) / Carlos Fernández Bandera (Autor:in)
2021
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Green Building Studio software
British Library Online Contents | 2005
Building Energy Simulation in Real Time through an Open Standard Interface
Online Contents | 2015
|Building energy simulation in real time through an open standard interface
Online Contents | 2016
|INFORMATION TECHNOLOGY - Green Building Studio software
Online Contents | 2005
Implementing energy building simulation into design studio: lessons learned in Brazil
British Library Conference Proceedings | 2007
|