Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Experimental Study on Uniaxial Compression of Bamboo Poles with Different Reinforcements
The natural round bamboo is a kind of ecological building material with many excellent physical and mechanical characteristics, such as fast growth, high strength and good environmental performance. However, the natural round bamboos were barely used for its worse durability and easiness to crack compared other bamboo productions after secondary operation. In order to improve the safety and durability of the round bamboo structure, the axial compression test of the GFRP (glass fiber-reinforced polymer) and/or mortar reinforcing cracked bamboo was conducted. The 20 cm tall round bamboo column specimens were divided into five categories: the first without cracks and reinforcement, the second with cracks but without reinforcement, the third with cracks and full GFRP reinforcement, the forth with cracks and fulfil of cement motrar, and the last with cracks and reinforced using both GFRP and cement mortar. The bearing capacity and the failure modes were observed and studied. It was found that the composite reinforcement of GFRP and mortar could significantly increase the bearing capacity of the cracked round bamboos, and avoid brittle failure through improving the ductility of the specimens.
Experimental Study on Uniaxial Compression of Bamboo Poles with Different Reinforcements
The natural round bamboo is a kind of ecological building material with many excellent physical and mechanical characteristics, such as fast growth, high strength and good environmental performance. However, the natural round bamboos were barely used for its worse durability and easiness to crack compared other bamboo productions after secondary operation. In order to improve the safety and durability of the round bamboo structure, the axial compression test of the GFRP (glass fiber-reinforced polymer) and/or mortar reinforcing cracked bamboo was conducted. The 20 cm tall round bamboo column specimens were divided into five categories: the first without cracks and reinforcement, the second with cracks but without reinforcement, the third with cracks and full GFRP reinforcement, the forth with cracks and fulfil of cement motrar, and the last with cracks and reinforced using both GFRP and cement mortar. The bearing capacity and the failure modes were observed and studied. It was found that the composite reinforcement of GFRP and mortar could significantly increase the bearing capacity of the cracked round bamboos, and avoid brittle failure through improving the ductility of the specimens.
Experimental Study on Uniaxial Compression of Bamboo Poles with Different Reinforcements
Meng Xinmiao (Autor:in) / Cao Yuyang (Autor:in) / Sun Han (Autor:in) / Feng Peng (Autor:in)
2019
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Hydro-mechanical reinforcements of live poles to slope stability
British Library Online Contents | 2018
|PO-18 Bamboo Poles For Spatial And Light Structures
British Library Conference Proceedings | 2004
|