Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
The C/N Ratio’s Effect on a Membrane-Aerated Biofilm Reactor (MABR): COD and Nitrogen Removal, Biofilm Characteristics, and Microbial Community Structure
In this study, a laboratory-scale membrane aerated biofilm reactor system was operated successively through four phases with different C/N ratios (7, 5, 3, and 1) for 15 days each to investigate the C/N ratio’s effect on the COD and nitrogen removal. The COD and NH4+-N removal efficiencies were slightly affected; however, NO3−-N accumulated in the C/N = 1 phase, and slight NO2−-N accumulation was observed in the C/N = 7 phase, leading to lower total nitrogen (TN) removal in the two phases. The TN removal efficiency reached the highest in the C/N = 5 phase at around 70%, and the TN concentration was reduced to 12.3 mg/L on average. Biomass and biofilm thickness had a positive correlation with C/N ratios. The C/N ratio affected not only the generation of extracellular polymeric substances but also their chemical composition. Microbial analysis revealed that a C/N ratio of 5 was the most suitable for both nitrifying and denitrifying bacteria, and a higher C/N ratio favored aerobic denitrifying microbes.
The C/N Ratio’s Effect on a Membrane-Aerated Biofilm Reactor (MABR): COD and Nitrogen Removal, Biofilm Characteristics, and Microbial Community Structure
In this study, a laboratory-scale membrane aerated biofilm reactor system was operated successively through four phases with different C/N ratios (7, 5, 3, and 1) for 15 days each to investigate the C/N ratio’s effect on the COD and nitrogen removal. The COD and NH4+-N removal efficiencies were slightly affected; however, NO3−-N accumulated in the C/N = 1 phase, and slight NO2−-N accumulation was observed in the C/N = 7 phase, leading to lower total nitrogen (TN) removal in the two phases. The TN removal efficiency reached the highest in the C/N = 5 phase at around 70%, and the TN concentration was reduced to 12.3 mg/L on average. Biomass and biofilm thickness had a positive correlation with C/N ratios. The C/N ratio affected not only the generation of extracellular polymeric substances but also their chemical composition. Microbial analysis revealed that a C/N ratio of 5 was the most suitable for both nitrifying and denitrifying bacteria, and a higher C/N ratio favored aerobic denitrifying microbes.
The C/N Ratio’s Effect on a Membrane-Aerated Biofilm Reactor (MABR): COD and Nitrogen Removal, Biofilm Characteristics, and Microbial Community Structure
Huiyun Zhong (Autor:in) / Liangfei Dong (Autor:in) / Yuanyuan Tang (Autor:in) / Lin Qi (Autor:in) / Mengyu Wang (Autor:in)
2023
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Development and Application of Membrane Aerated Biofilm Reactor (MABR)—A Review
DOAJ | 2023
|British Library Conference Proceedings | 2011
|