Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
The Hydrochemical and Isotopic Evolution of the Surface Water and Groundwater for Impoundment in the Xiluodu Reservoir, Jinsha River, China
The construction of a large reservoir with a high dam may cause irreversible changes in the water flow system and even affect the original environmental balance. Xiluodu reservoir, as a representative of the high arch dam reservoirs in China, clearly has this potential issue. Based on the monitoring data of the hydrochemistry and stable isotopes of the water (δD, δ18O) in the Xiluodu reservoir, this study presents the evolution of the hydrochemical and isotopic characteristics of the surface water and groundwater in the reservoir before and after impoundment using cluster analysis and saturation index analysis. The main cations in the reservoir water and groundwater change from Ca2+ and Mg2+ to Ca2+ and Na+, respectively, while the ratio of to the total anions dropped from 0.86 to 0.7 as the main anion. The cluster analysis results show the high correlation between the groundwater and surface water before and after water impoundment. The calculation of saturation indices indicates that the hydrogeochemical process of the groundwater includes a different trend of the dissolution of minerals. The study of deuterium excess shows that the evaporation of the groundwater near the reservoir decreased after impoundment. Based on the above results and the recharge elevation, this research concludes that the interaction between the surface water and groundwater before and after impoundment is prominent and different. The groundwater replenished the river water before impoundment, while this relationship reversed after impoundment. This evolution process is caused by reservoir storage, and the drainage system and other conditions make this evolution possible. In addition, the influence of interaction evolution on the regional water decreases continuously along the dam site, and some areas even have irreversible changes.
The Hydrochemical and Isotopic Evolution of the Surface Water and Groundwater for Impoundment in the Xiluodu Reservoir, Jinsha River, China
The construction of a large reservoir with a high dam may cause irreversible changes in the water flow system and even affect the original environmental balance. Xiluodu reservoir, as a representative of the high arch dam reservoirs in China, clearly has this potential issue. Based on the monitoring data of the hydrochemistry and stable isotopes of the water (δD, δ18O) in the Xiluodu reservoir, this study presents the evolution of the hydrochemical and isotopic characteristics of the surface water and groundwater in the reservoir before and after impoundment using cluster analysis and saturation index analysis. The main cations in the reservoir water and groundwater change from Ca2+ and Mg2+ to Ca2+ and Na+, respectively, while the ratio of to the total anions dropped from 0.86 to 0.7 as the main anion. The cluster analysis results show the high correlation between the groundwater and surface water before and after water impoundment. The calculation of saturation indices indicates that the hydrogeochemical process of the groundwater includes a different trend of the dissolution of minerals. The study of deuterium excess shows that the evaporation of the groundwater near the reservoir decreased after impoundment. Based on the above results and the recharge elevation, this research concludes that the interaction between the surface water and groundwater before and after impoundment is prominent and different. The groundwater replenished the river water before impoundment, while this relationship reversed after impoundment. This evolution process is caused by reservoir storage, and the drainage system and other conditions make this evolution possible. In addition, the influence of interaction evolution on the regional water decreases continuously along the dam site, and some areas even have irreversible changes.
The Hydrochemical and Isotopic Evolution of the Surface Water and Groundwater for Impoundment in the Xiluodu Reservoir, Jinsha River, China
Ziwen Zhou (Autor:in) / Zhifang Zhou (Autor:in) / Haiyang Xu (Autor:in) / Mingwei Li (Autor:in)
2020
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
British Library Conference Proceedings | 2018
|British Library Conference Proceedings | 2002
|