Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
A Performance Study on 3D-Printed Bioplastic Pots from Soybean By-Products
Sustainability is a key factor in the development of new materials for plant pots, given the significant environmental impact of traditional plastic-based pots. Researchers have paid attention to developing biodegradable and sustainable alternatives to petroleum-based pots. In this study, two novel bioplastic formulations are developed, which incorporated soy-based by-product fractions to produce plant pots with self-fertilizing capability while also being cost-competitive. A 3D-printing process, fused filament fabrication, is used to produce plant containers from the filaments of soy-based new materials. Further, a small-scale greenhouse experiment is conducted to compare the performance of the soy-based 3D-printed bioplastic pots with pure polylactic acid (PLA) 3D-printed pots and traditional plastic pots, by growing a fruit-bearing plant (tomato) and a flowering plant (zinnia). Plant growth properties and root circling are analyzed, and the results show that the soy-based pots performed comparably to traditional plastic pots, especially in dry conditions, and also reduced root circling. While a more in-depth analysis is necessary, these initial findings suggest that using soy-based fractions and 3D-printing technology could provide a sustainable approach to developing plant pots, which could reduce the environmental impact of plastic-based containers and improve plant health.
A Performance Study on 3D-Printed Bioplastic Pots from Soybean By-Products
Sustainability is a key factor in the development of new materials for plant pots, given the significant environmental impact of traditional plastic-based pots. Researchers have paid attention to developing biodegradable and sustainable alternatives to petroleum-based pots. In this study, two novel bioplastic formulations are developed, which incorporated soy-based by-product fractions to produce plant pots with self-fertilizing capability while also being cost-competitive. A 3D-printing process, fused filament fabrication, is used to produce plant containers from the filaments of soy-based new materials. Further, a small-scale greenhouse experiment is conducted to compare the performance of the soy-based 3D-printed bioplastic pots with pure polylactic acid (PLA) 3D-printed pots and traditional plastic pots, by growing a fruit-bearing plant (tomato) and a flowering plant (zinnia). Plant growth properties and root circling are analyzed, and the results show that the soy-based pots performed comparably to traditional plastic pots, especially in dry conditions, and also reduced root circling. While a more in-depth analysis is necessary, these initial findings suggest that using soy-based fractions and 3D-printing technology could provide a sustainable approach to developing plant pots, which could reduce the environmental impact of plastic-based containers and improve plant health.
A Performance Study on 3D-Printed Bioplastic Pots from Soybean By-Products
Arup Dey (Autor:in) / Md Mahbubar Rahman (Autor:in) / Anunay Gupta (Autor:in) / Nita Yodo (Autor:in) / Chiwon W. Lee (Autor:in)
2023
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Robotic Fabrication with Bioplastic Materials
TIBKAT | 2020
|British Library Online Contents | 1997
|