Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Organogels for Low-Polar Organic Solvents: Potential Applications on Cultural Heritage Materials
Traditional cleaning methods for removing undesired substances from artworks often involve the use of toxic volatile solvents, raising concerns about human health and environmental impact. Over time, various cleaning systems, such as thickeners, rigid, peelable, and nanostructured gels, have been introduced in the conservation sector to minimize solvent use and toxicity. However, these methods are primarily tailored for aqueous solutions or medium-to-high-polar solvents, leaving sustainable organogels for low-polar solvents largely unexplored. This paper explores the application of Low-Molecular-Weight Gelators (LMWGs) in the field of cultural heritage conservation, focusing on their potential to gel low-polar organic solvents. LMWGs, including cholesterol derivatives, fatty acid-derived compounds, anthryl, anthraquinone, amino acid, and saccharide-based organogelators, offer biocompatible and cost-effective options by forming supramolecular gels that immobilize solvents and reduce their release into the environment. This study highlights the need to transition from traditional, often toxic, solvents to greener and more sustainable cleaning systems by emphasizing LMWGs’ biodegradability, biocompatibility, and sustainability. While challenges such as optimizing gel properties and ensuring compatibility with artwork surfaces still need to be addressed, LMWGs hold promise as organogelators in conservation practice. Further research into LMWGs should focus on their optimization for conservation applications by adjusting their rheological properties and physico-chemical stability.
Organogels for Low-Polar Organic Solvents: Potential Applications on Cultural Heritage Materials
Traditional cleaning methods for removing undesired substances from artworks often involve the use of toxic volatile solvents, raising concerns about human health and environmental impact. Over time, various cleaning systems, such as thickeners, rigid, peelable, and nanostructured gels, have been introduced in the conservation sector to minimize solvent use and toxicity. However, these methods are primarily tailored for aqueous solutions or medium-to-high-polar solvents, leaving sustainable organogels for low-polar solvents largely unexplored. This paper explores the application of Low-Molecular-Weight Gelators (LMWGs) in the field of cultural heritage conservation, focusing on their potential to gel low-polar organic solvents. LMWGs, including cholesterol derivatives, fatty acid-derived compounds, anthryl, anthraquinone, amino acid, and saccharide-based organogelators, offer biocompatible and cost-effective options by forming supramolecular gels that immobilize solvents and reduce their release into the environment. This study highlights the need to transition from traditional, often toxic, solvents to greener and more sustainable cleaning systems by emphasizing LMWGs’ biodegradability, biocompatibility, and sustainability. While challenges such as optimizing gel properties and ensuring compatibility with artwork surfaces still need to be addressed, LMWGs hold promise as organogelators in conservation practice. Further research into LMWGs should focus on their optimization for conservation applications by adjusting their rheological properties and physico-chemical stability.
Organogels for Low-Polar Organic Solvents: Potential Applications on Cultural Heritage Materials
Chiara Biribicchi (Autor:in) / Laura Giuliani (Autor:in) / Andrea Macchia (Autor:in) / Gabriele Favero (Autor:in)
2023
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Poly(alkoxysilane) reusable organogels for removal of oil/organic solvents from water surface
Online Contents | 2015
|Natural Heritage Valuation Methods: Applications to Cultural Heritage
British Library Conference Proceedings | 2001
|Organogels and Low Molecular Mass Organic Gelators
British Library Online Contents | 2000
|DataCite | 2015
|Microemulsions and Organogels: Properties and Novel Applications
British Library Online Contents | 1993
|