Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Temporal and Spatial Characteristics of Multidimensional Extreme Precipitation Indicators: A Case Study in the Loess Plateau, China
Extreme precipitation can seriously affect the ecological environment, agriculture, human safety, and property resilience. A full-scale and scientific assessment in extreme precipitation characteristics is necessary for water resources management and providing decision-making support to mitigate the potential losses brought by extreme precipitation. In the present study, a multidimensional risk assessment framework is developed to investigate the spatial–temporal changes in different extreme precipitation indicators. The Gaussian mixture model (GMM) is applied to fit the distribution for each indicator and carry out single index risk assessment. The joint probabilistic features of multiple extreme indicators can be explored through coupling the GMM distributions into copulas. In addition, the moving window approach and the Mann–Kendall test are integrated to examine non-stationary risks (evaluated by “AND”, “OR”, and Kendall return periods) of multidimensional indicators along with their changing trends and significance. The proposed assessment framework is applied to the Loess Plateau, China. Four extreme precipitation indicators are characterized: the amount (P95), the number of days (D95), the intensity (I95), and the proportion (R95) of extreme precipitation. The spatial–temporal changes of these indicators and their multidimensional combinations (including six two-dimensional and three three-dimensional combinations) are fully identified and quantitatively evaluated.
Temporal and Spatial Characteristics of Multidimensional Extreme Precipitation Indicators: A Case Study in the Loess Plateau, China
Extreme precipitation can seriously affect the ecological environment, agriculture, human safety, and property resilience. A full-scale and scientific assessment in extreme precipitation characteristics is necessary for water resources management and providing decision-making support to mitigate the potential losses brought by extreme precipitation. In the present study, a multidimensional risk assessment framework is developed to investigate the spatial–temporal changes in different extreme precipitation indicators. The Gaussian mixture model (GMM) is applied to fit the distribution for each indicator and carry out single index risk assessment. The joint probabilistic features of multiple extreme indicators can be explored through coupling the GMM distributions into copulas. In addition, the moving window approach and the Mann–Kendall test are integrated to examine non-stationary risks (evaluated by “AND”, “OR”, and Kendall return periods) of multidimensional indicators along with their changing trends and significance. The proposed assessment framework is applied to the Loess Plateau, China. Four extreme precipitation indicators are characterized: the amount (P95), the number of days (D95), the intensity (I95), and the proportion (R95) of extreme precipitation. The spatial–temporal changes of these indicators and their multidimensional combinations (including six two-dimensional and three three-dimensional combinations) are fully identified and quantitatively evaluated.
Temporal and Spatial Characteristics of Multidimensional Extreme Precipitation Indicators: A Case Study in the Loess Plateau, China
Chaoxing Sun (Autor:in) / Guohe Huang (Autor:in) / Yurui Fan (Autor:in)
2020
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Collapsible Loess on the Loess Plateau of China
British Library Conference Proceedings | 1995
|Spatial and Temporal Patterns of the Extreme Precipitation across the Tibetan Plateau (1986–2015)
DOAJ | 2019
|DOAJ | 2020
|DOAJ | 2020
|