Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Phytoplankton Dynamics and Water Quality in the Venice Lagoon
We analyzed the phytoplankton abundance and community structure monthly over a 20-year period (1998–2017) at five stations in the Venice lagoon (VL), one of the sites belonging to the Long-Term Ecological Research network of Italy (LTER-Italy). We focused on phytoplankton seasonal patterns, inter-annual variability and long-term trends in relation to water quality. Diatoms numerically dominated (ca. 60% on average), followed by nanoflagellates (37%), while coccolithophorids and dinoflagellates contributed less than 2%. We observed distinct seasonal and inter-annual changes in the abundance and floristic composition of the phytoplankton groups, whilst no clear long-term trend was statistically significant. We also assessed the water quality changes, applying to our dataset the multimetric phytoplankton index (MPI), recently officially adopted by Italy to accomplish the water framework directive (WFD) requirements. The index evidenced a temporal improvement of the water quality from “moderate” to “good” and allowed us to confirm its reliability to address the changes in the water quality, not only spatially—as previously known—but also for following the yearly time trends. Overall, our results highlight the importance of long-term observations, for understanding the variability in the phytoplankton communities of the lagoon as well as the relevance of their use to test and apply synthetic descriptors of water quality, in compliance with the environmental directives.
Phytoplankton Dynamics and Water Quality in the Venice Lagoon
We analyzed the phytoplankton abundance and community structure monthly over a 20-year period (1998–2017) at five stations in the Venice lagoon (VL), one of the sites belonging to the Long-Term Ecological Research network of Italy (LTER-Italy). We focused on phytoplankton seasonal patterns, inter-annual variability and long-term trends in relation to water quality. Diatoms numerically dominated (ca. 60% on average), followed by nanoflagellates (37%), while coccolithophorids and dinoflagellates contributed less than 2%. We observed distinct seasonal and inter-annual changes in the abundance and floristic composition of the phytoplankton groups, whilst no clear long-term trend was statistically significant. We also assessed the water quality changes, applying to our dataset the multimetric phytoplankton index (MPI), recently officially adopted by Italy to accomplish the water framework directive (WFD) requirements. The index evidenced a temporal improvement of the water quality from “moderate” to “good” and allowed us to confirm its reliability to address the changes in the water quality, not only spatially—as previously known—but also for following the yearly time trends. Overall, our results highlight the importance of long-term observations, for understanding the variability in the phytoplankton communities of the lagoon as well as the relevance of their use to test and apply synthetic descriptors of water quality, in compliance with the environmental directives.
Phytoplankton Dynamics and Water Quality in the Venice Lagoon
Fabrizio Bernardi Aubry (Autor:in) / Francesco Acri (Autor:in) / Stefania Finotto (Autor:in) / Alessandra Pugnetti (Autor:in)
2021
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
A model for macroalgae and phytoplankton growth in the Venice Lagoon
Online Contents | 1995
|Phytoplankton–Macrophyte Interaction in the Lagoon of Venice (Northern Adriatic Sea, Italy)
DOAJ | 2020
|A COMPARISON OF BARDAWIL LAGOON AND VENICE LAGOON
British Library Online Contents | 2006
|Seagrass Restoration in Venice Lagoon
British Library Conference Proceedings | 1995
|Water Quality Assessment in the Venice Lagoon Watershed with Multiple Modelling Approaches
BASE | 2012
|