Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Using Constructed Floating Wetlands to Remove Nutrients from a Waste Stabilization Pond
This study reports the biomass accumulation, plant nutrient concentration, and nutrient uptake rates of plants in a constructed floating wetland (CFW) installed for a sewage treatment application in Australia. Plant biomass accumulation was estimated based on field samplings throughout the duration of the study. Analysis of samples of each plant species was also completed to estimate the mean plant tissue nutrient content. The plant biomass accumulation estimate and the mean plant tissue nutrient concentration were then used to estimate the total nutrient uptake for each species. Each of the species were found to differ in biomass accumulation and plant tissue nutrient concentration and the distribution of biomass and nutrients between the shoots and roots. The nutrient uptake rates varied between the species, with B. articulata having the greatest nutrient uptake rates (shoots: N, 104 ± 31.5 g/m2, P, 12.9 ± 3.87 g/m2; roots: N, 23.9 ± 7.23 g/m2, P, 5.54 ± 1.67 g/m2). Harvesting of the four CFW islands after 375 days of growth removed an estimated 23.2 kg of N and 2.97 kg of P. The results of this study indicate that the use of CFWs with carefully selected plant species can successfully remove significant amounts of nutrients from domestic wastewater.
Using Constructed Floating Wetlands to Remove Nutrients from a Waste Stabilization Pond
This study reports the biomass accumulation, plant nutrient concentration, and nutrient uptake rates of plants in a constructed floating wetland (CFW) installed for a sewage treatment application in Australia. Plant biomass accumulation was estimated based on field samplings throughout the duration of the study. Analysis of samples of each plant species was also completed to estimate the mean plant tissue nutrient content. The plant biomass accumulation estimate and the mean plant tissue nutrient concentration were then used to estimate the total nutrient uptake for each species. Each of the species were found to differ in biomass accumulation and plant tissue nutrient concentration and the distribution of biomass and nutrients between the shoots and roots. The nutrient uptake rates varied between the species, with B. articulata having the greatest nutrient uptake rates (shoots: N, 104 ± 31.5 g/m2, P, 12.9 ± 3.87 g/m2; roots: N, 23.9 ± 7.23 g/m2, P, 5.54 ± 1.67 g/m2). Harvesting of the four CFW islands after 375 days of growth removed an estimated 23.2 kg of N and 2.97 kg of P. The results of this study indicate that the use of CFWs with carefully selected plant species can successfully remove significant amounts of nutrients from domestic wastewater.
Using Constructed Floating Wetlands to Remove Nutrients from a Waste Stabilization Pond
Isaac Huth (Autor:in) / Christopher Walker (Autor:in) / Ramraj Kulkarni (Autor:in) / Terry Lucke (Autor:in)
2021
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Shrimp pond effluent: pollution problems and treatment by constructed wetlands
British Library Conference Proceedings | 1996
|Oxygen transfer in marsh-pond-marsh constructed wetlands treating swine wastewater
Taylor & Francis Verlag | 2010
|Oxygen transfer in marsh-pond-marsh constructed wetlands treating swine wastewater
Online Contents | 2010
|Removal of nutrients from septic tank effluent with baffle subsurface-flow constructed wetlands
Online Contents | 2015
|