Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
A Performance-Based Window Design and Evaluation Model for Naturally Ventilated Offices
This study proposes a performance-based window design model for optimised natural ventilation potential by reducing the level of indoor carbon dioxide (CO2) concentration and improving thermal comfort, consequently minimising supplementary heating/cooling loads. The model consists of several stages: (1) Knowledge acquisition, (2) establishing a relationship between window design and natural ventilation, (3) identifying performance criteria and the design of experiments (DOE), (4) conducting performance-based dynamic simulations, (5) evaluation of findings, and (6) making informed design decisions. The study also proposed an evaluation method by which assessments of indoor CO2 concentration and adaptive thermal comfort are performed using the threshold suggested by the World Health Organisation (WHO, Geneva, Switzerland) and the acceptability categories of the British/European standard BS EN 15251:2007. The proposed model was applied to a single office inspired by the staff offices at the Department of Architecture, Eastern Mediterranean University, Famagusta, North Cyprus. The findings show that the developed model of performance-based window design enables the handling of various window design variables along with different performance criteria to determine the near-optimal window design alternatives for effective natural ventilation (NV) and mixed-mode (MM) offices. This model can guide architects in making informed decisions in the early stages of office window design.
A Performance-Based Window Design and Evaluation Model for Naturally Ventilated Offices
This study proposes a performance-based window design model for optimised natural ventilation potential by reducing the level of indoor carbon dioxide (CO2) concentration and improving thermal comfort, consequently minimising supplementary heating/cooling loads. The model consists of several stages: (1) Knowledge acquisition, (2) establishing a relationship between window design and natural ventilation, (3) identifying performance criteria and the design of experiments (DOE), (4) conducting performance-based dynamic simulations, (5) evaluation of findings, and (6) making informed design decisions. The study also proposed an evaluation method by which assessments of indoor CO2 concentration and adaptive thermal comfort are performed using the threshold suggested by the World Health Organisation (WHO, Geneva, Switzerland) and the acceptability categories of the British/European standard BS EN 15251:2007. The proposed model was applied to a single office inspired by the staff offices at the Department of Architecture, Eastern Mediterranean University, Famagusta, North Cyprus. The findings show that the developed model of performance-based window design enables the handling of various window design variables along with different performance criteria to determine the near-optimal window design alternatives for effective natural ventilation (NV) and mixed-mode (MM) offices. This model can guide architects in making informed decisions in the early stages of office window design.
A Performance-Based Window Design and Evaluation Model for Naturally Ventilated Offices
Hardi K. Abdullah (Autor:in) / Halil Z. Alibaba (Autor:in)
2022
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Indoor-Outdoor Atmospheric Particulate Matter Relationships in Naturally Ventilated Offices
Online Contents | 2007
|Acceptable Temperature Ranges in Naturally Ventilated and Air-Conditioned Offices
British Library Conference Proceedings | 1998
|Acceptable Temperature Ranges in Naturally Ventilated and Air-Conditioned Offices
British Library Online Contents | 1998
|