Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Back analysis of long-term stability of a 92 m span ancient quarrying cavern
Long-term stability of large-span caverns is a challenging issue for design and construction of underground rock engineering. The Heidong cavern group consisting of 21 caverns was constructed about 1400 years ago for quarrying in massive Cretaceous tuff. The cavern No. 5 of the Heidong cavern group is characterized by an unsupported span up to 92 m, with the overburden thickness of only 3–25 m. To analyze its long-term stability, a detailed investigation was conducted to obtain its geometry and rock mass characteristics, and to monitor surrounding rock displacements. Based on field survey and laboratory tests, numerical simulations were performed using the finite difference code FLAC3D. The analysis results revealed that for the long-term stability of the cavern No. 5, some major factors should be carefully considered, such as cavern excavation method in hard massive rocks, site investigation using trial pits, tools like short iron chisel and hammer for manual excavation, geometric dome roof, and waste rocks within abutment or on the floor. The highlights of the technologies obtained from this large-scale ancient underground project can provide reference for other similar project excavations in practice.
Back analysis of long-term stability of a 92 m span ancient quarrying cavern
Long-term stability of large-span caverns is a challenging issue for design and construction of underground rock engineering. The Heidong cavern group consisting of 21 caverns was constructed about 1400 years ago for quarrying in massive Cretaceous tuff. The cavern No. 5 of the Heidong cavern group is characterized by an unsupported span up to 92 m, with the overburden thickness of only 3–25 m. To analyze its long-term stability, a detailed investigation was conducted to obtain its geometry and rock mass characteristics, and to monitor surrounding rock displacements. Based on field survey and laboratory tests, numerical simulations were performed using the finite difference code FLAC3D. The analysis results revealed that for the long-term stability of the cavern No. 5, some major factors should be carefully considered, such as cavern excavation method in hard massive rocks, site investigation using trial pits, tools like short iron chisel and hammer for manual excavation, geometric dome roof, and waste rocks within abutment or on the floor. The highlights of the technologies obtained from this large-scale ancient underground project can provide reference for other similar project excavations in practice.
Back analysis of long-term stability of a 92 m span ancient quarrying cavern
Yanjun Shang (Autor:in) / Lihui Li (Autor:in) / Wantong He (Autor:in) / Luqing Zhang (Autor:in) / Tianbin Li (Autor:in) / Zhifa Yang (Autor:in)
2017
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Stability analysis of a large cavern in Italy for quarrying exploitation of a pink marble
Online Contents | 2000
|Stability analysis of a large cavern in Italy for quarrying exploitation of a pink marble
British Library Online Contents | 2000
|