Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Physical and Mechanical Properties of Granulated Rubber Mixed with Granular Soils—A Literature Review
End-of-life tires (ELTs) represent a great source of readily available, low-cost and sustainable construction materials having excellent engineering properties. Their reuse (in the form of granulated rubber mixed with soils) in large-volume recycling civil (geotechnical) engineering applications would be beneficial and should be encouraged. It is estimated that at present worldwide only less than 10% of ELTs are reused in geotechnical applications, while nearly 40% are recycled as tire-derived fuel. Although many studies have focused on the material characterization of soil-rubber mixtures (SRMs), it appears that the results of such investigations have not been properly compiled and compared, making it difficult to fully understand the potential applicability of SRMs. In an attempt to provide useful insights facilitating the use of SRMs as geotechnical construction materials, this review paper presents a comprehensive review of published research on the engineering properties of granular soils (i.e., mainly sand and gravel) blended with various recycled rubber inclusions. Available experimental data are scrutinized, and the results of the analyses are presented and discussed primarily in terms of effects of rubber content and aspect ratio (ratio of rubber to gravel median particle sizes) on compaction, permeability, strength and compression properties along with dynamic and cyclic deformation characteristics of SRMs. This review paper may help to alleviate the concerns of designers and consumers and encourage and further promote the use of recycled rubber tires on a larger scale in civil engineering projects.
Physical and Mechanical Properties of Granulated Rubber Mixed with Granular Soils—A Literature Review
End-of-life tires (ELTs) represent a great source of readily available, low-cost and sustainable construction materials having excellent engineering properties. Their reuse (in the form of granulated rubber mixed with soils) in large-volume recycling civil (geotechnical) engineering applications would be beneficial and should be encouraged. It is estimated that at present worldwide only less than 10% of ELTs are reused in geotechnical applications, while nearly 40% are recycled as tire-derived fuel. Although many studies have focused on the material characterization of soil-rubber mixtures (SRMs), it appears that the results of such investigations have not been properly compiled and compared, making it difficult to fully understand the potential applicability of SRMs. In an attempt to provide useful insights facilitating the use of SRMs as geotechnical construction materials, this review paper presents a comprehensive review of published research on the engineering properties of granular soils (i.e., mainly sand and gravel) blended with various recycled rubber inclusions. Available experimental data are scrutinized, and the results of the analyses are presented and discussed primarily in terms of effects of rubber content and aspect ratio (ratio of rubber to gravel median particle sizes) on compaction, permeability, strength and compression properties along with dynamic and cyclic deformation characteristics of SRMs. This review paper may help to alleviate the concerns of designers and consumers and encourage and further promote the use of recycled rubber tires on a larger scale in civil engineering projects.
Physical and Mechanical Properties of Granulated Rubber Mixed with Granular Soils—A Literature Review
Ali Tasalloti (Autor:in) / Gabriele Chiaro (Autor:in) / Arjun Murali (Autor:in) / Laura Banasiak (Autor:in)
2021
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Dynamic properties of granular soils mixed with granulated rubber
Online Contents | 2012
|Dynamic properties of granular soils mixed with granulated rubber
British Library Online Contents | 2012
|Mechanical properties and time-dependent behaviour of sand-granulated rubber mixtures
Taylor & Francis Verlag | 2018
|Dynamic Properties of Granulated Rubber-Sand Mixtures
Online Contents | 2000
|Dynamic Properties of Granulated Rubber/Sand Mixtures
British Library Online Contents | 2000
|