Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Elevated expression of AhR and NLRP3 link polycyclic aromatic hydrocarbon exposure to cytokine storm in preschool children
Background: Polycyclic aromatic hydrocarbons (PAHs), as a group of persistent organic pollutants, are linked to impaired immune function and low-grade inflammation in adults and children. However, the potential of PAHs to lead to a cytokine storm associated with AhR (aryl hydrocarbon receptor) and NLRP3 (NLR family pyrin domain containing 3) in humans has been poorly studied. Objectives: We aimed to investigate the associations between PAH exposure, AhR and NLRP3 expression, and cytokines associated with a cytokine storm in healthy preschoolers. Methods: Basic demographic surveys and physical examinations were conducted on 248 preschoolers from an electronic waste (e-waste) recycling area (Guiyu, n = 121) and a reference area (Haojiang, n = 127). Ten urinary PAH metabolite (OH-PAH) concentrations were measured. We also measured the expression levels of AhR and NLRP3 and seventeen serum cytokine levels. Results: The concentrations of multiple OH-PAHs were significantly higher in the exposed group than those in the reference group, especially 1-hydroxynaphthalene (1-OH-Nap) and 2-hydroxynaphthalene (2-OH-Nap). PAH exposure was closely related to a child's living environment and hygiene habits. Expression levels of AhR and NLRP3 were significantly higher in the exposed group than in the reference group. Similarly, serum IL-1β, IL-4, IL-5, IL-10, IL-12p70, IL-13, IL-17A, IL-18, IL-22, IL-23, and IFN-γ levels were notably higher in the e-waste-exposed children than in the reference children. After adjusting for age, gender, BMI, family income, parental education level, and second-hand smoke exposure, we found that increased PAH exposure was associated with higher AhR and NLRP3 expression and elevated IL-4, IL-10, IL-12p70, IL-18, IL-22, IL-23, TNF-α, and IFN-γ levels. The associations between PAH exposure and IL-1β, IL-18, IFN-γ, and TNF-β were mediated by NLRP3 expression, and the relationships between PAH exposure and IL-4, IL-10, IL-12p70, IL-22, IL-23, and TNF-α were mediated by AhR expression. Conclusions: Our findings suggest that the association between PAH exposure and a cytokine storm may be mediated by AhR and NLRP3 expression among preschoolers.
Elevated expression of AhR and NLRP3 link polycyclic aromatic hydrocarbon exposure to cytokine storm in preschool children
Background: Polycyclic aromatic hydrocarbons (PAHs), as a group of persistent organic pollutants, are linked to impaired immune function and low-grade inflammation in adults and children. However, the potential of PAHs to lead to a cytokine storm associated with AhR (aryl hydrocarbon receptor) and NLRP3 (NLR family pyrin domain containing 3) in humans has been poorly studied. Objectives: We aimed to investigate the associations between PAH exposure, AhR and NLRP3 expression, and cytokines associated with a cytokine storm in healthy preschoolers. Methods: Basic demographic surveys and physical examinations were conducted on 248 preschoolers from an electronic waste (e-waste) recycling area (Guiyu, n = 121) and a reference area (Haojiang, n = 127). Ten urinary PAH metabolite (OH-PAH) concentrations were measured. We also measured the expression levels of AhR and NLRP3 and seventeen serum cytokine levels. Results: The concentrations of multiple OH-PAHs were significantly higher in the exposed group than those in the reference group, especially 1-hydroxynaphthalene (1-OH-Nap) and 2-hydroxynaphthalene (2-OH-Nap). PAH exposure was closely related to a child's living environment and hygiene habits. Expression levels of AhR and NLRP3 were significantly higher in the exposed group than in the reference group. Similarly, serum IL-1β, IL-4, IL-5, IL-10, IL-12p70, IL-13, IL-17A, IL-18, IL-22, IL-23, and IFN-γ levels were notably higher in the e-waste-exposed children than in the reference children. After adjusting for age, gender, BMI, family income, parental education level, and second-hand smoke exposure, we found that increased PAH exposure was associated with higher AhR and NLRP3 expression and elevated IL-4, IL-10, IL-12p70, IL-18, IL-22, IL-23, TNF-α, and IFN-γ levels. The associations between PAH exposure and IL-1β, IL-18, IFN-γ, and TNF-β were mediated by NLRP3 expression, and the relationships between PAH exposure and IL-4, IL-10, IL-12p70, IL-22, IL-23, and TNF-α were mediated by AhR expression. Conclusions: Our findings suggest that the association between PAH exposure and a cytokine storm may be mediated by AhR and NLRP3 expression among preschoolers.
Elevated expression of AhR and NLRP3 link polycyclic aromatic hydrocarbon exposure to cytokine storm in preschool children
Zhiheng Cheng (Autor:in) / Xia Huo (Autor:in) / Yifeng Dai (Autor:in) / Xueling Lu (Autor:in) / Machteld N. Hylkema (Autor:in) / Xijin Xu (Autor:in)
2020
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Seasonal Variation of Polycyclic Aromatic Hydrocarbon Exposure Levels in Mexico City
Taylor & Francis Verlag | 2010
|Polycyclic aromatic hydrocarbons: levels and phase distributions in preschool microenvironment
Wiley | 2015
|