Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
CO2 Emissions Accounting and Carbon Peak Prediction of China’s Papermaking Industry
China has been the world’s largest producer and consumer of paper products. In the context of the “carbon peaking and carbon neutrality goals”, China’s papermaking industry which is traditionally a high energy-consuming and high-emissions industry, desperately needs a nationally appropriate low-carbon development path. From the consumption-side perspective, this paper calculates the CO2 emissions of China’s papermaking industry from 2000 to 2019 by using carbon emission nuclear algorithm, grain-straw ratio, first-order attenuation method, and STIRFDT decomposition model, etc., to further explore the core stages and basic patterns affecting the industry’s carbon peaking. The results show that the total CO2 emissions of China’s papermaking industry showed an upward trend from 2000–2013, stable from 2013–2017, and a steady but slight decline from 2017–2019. Meanwhile, the total CO2 emissions of the full life cycle of paper products in China have decreased to a certain extent in the raw material acquisition, pulp, and paper making and shipping stages, with only the waste paper disposal stage showing a particular upward trend. We find that from 2000 to 2019, China’s CO2 emissions in the pulping and papermaking stage of paper products accounted for 68% of the total emissions in the whole life cycle, of which 59% was caused by coal consumption. Moreover, the scenario prediction shows that improving the energy structure and increasing the waste paper recovery rate can reduce the CO2 emissions of the industry, and it is more significant when both work. Based on this and the four core stages of CO2 emissions of the papermaking industry we proposed ways to promote CO2 emissions peaking of China’s paper products.
CO2 Emissions Accounting and Carbon Peak Prediction of China’s Papermaking Industry
China has been the world’s largest producer and consumer of paper products. In the context of the “carbon peaking and carbon neutrality goals”, China’s papermaking industry which is traditionally a high energy-consuming and high-emissions industry, desperately needs a nationally appropriate low-carbon development path. From the consumption-side perspective, this paper calculates the CO2 emissions of China’s papermaking industry from 2000 to 2019 by using carbon emission nuclear algorithm, grain-straw ratio, first-order attenuation method, and STIRFDT decomposition model, etc., to further explore the core stages and basic patterns affecting the industry’s carbon peaking. The results show that the total CO2 emissions of China’s papermaking industry showed an upward trend from 2000–2013, stable from 2013–2017, and a steady but slight decline from 2017–2019. Meanwhile, the total CO2 emissions of the full life cycle of paper products in China have decreased to a certain extent in the raw material acquisition, pulp, and paper making and shipping stages, with only the waste paper disposal stage showing a particular upward trend. We find that from 2000 to 2019, China’s CO2 emissions in the pulping and papermaking stage of paper products accounted for 68% of the total emissions in the whole life cycle, of which 59% was caused by coal consumption. Moreover, the scenario prediction shows that improving the energy structure and increasing the waste paper recovery rate can reduce the CO2 emissions of the industry, and it is more significant when both work. Based on this and the four core stages of CO2 emissions of the papermaking industry we proposed ways to promote CO2 emissions peaking of China’s paper products.
CO2 Emissions Accounting and Carbon Peak Prediction of China’s Papermaking Industry
Jiameng Yang (Autor:in) / Yuchen Hua (Autor:in) / Jiarong Ye (Autor:in) / Shiying Xu (Autor:in) / Zhiyong (John) Liu (Autor:in)
2022
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Dynamic Scenario Predictions of Peak Carbon Emissions in China’s Construction Industry
DOAJ | 2023
|DOAJ | 2024
|Decomposition Analysis and Trend Prediction of CO2 Emissions in China’s Transportation Industry
DOAJ | 2020
|Scenario Prediction of Energy Consumption and CO2 Emissions in China’s Machinery Industry
DOAJ | 2017
|