Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Monthly Rainfall Anomalies Forecasting for Southwestern Colombia Using Artificial Neural Networks Approaches
Improving the accuracy of rainfall forecasting is relevant for adequate water resources planning and management. This research project evaluated the performance of the combination of three Artificial Neural Networks (ANN) approaches in the forecasting of the monthly rainfall anomalies for Southwestern Colombia. For this purpose, we applied the Non-linear Principal Component Analysis (NLPCA) approach to get the main modes, a Neural Network Autoregressive Moving Average with eXogenous variables (NNARMAX) as a model, and an Inverse NLPCA approach for reconstructing the monthly rainfall anomalies forecasting in the Andean Region (AR) and the Pacific Region (PR) of Southwestern Colombia, respectively. For the model, we used monthly rainfall lagged values of the eight large-scale climate indices linked to the El Niño Southern Oscillation (ENSO) phenomenon as exogenous variables. They were cross-correlated with the main modes of the rainfall variability of AR and PR obtained using NLPCA. Subsequently, both NNARMAX models were trained from 1983 to 2014 and tested for two years (2015–2016). Finally, the reconstructed outputs from the NNARMAX models were used as inputs for the Inverse NLPCA approach. The performance of the ANN approaches was measured using three different performance metrics: Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and Pearson’s correlation (r). The results showed suitable forecasting performance for AR and PR, and the combination of these ANN approaches demonstrated the possibility of rainfall forecasting in these sub-regions five months in advance and provided useful information for the decision-makers in Southwestern Colombia.
Monthly Rainfall Anomalies Forecasting for Southwestern Colombia Using Artificial Neural Networks Approaches
Improving the accuracy of rainfall forecasting is relevant for adequate water resources planning and management. This research project evaluated the performance of the combination of three Artificial Neural Networks (ANN) approaches in the forecasting of the monthly rainfall anomalies for Southwestern Colombia. For this purpose, we applied the Non-linear Principal Component Analysis (NLPCA) approach to get the main modes, a Neural Network Autoregressive Moving Average with eXogenous variables (NNARMAX) as a model, and an Inverse NLPCA approach for reconstructing the monthly rainfall anomalies forecasting in the Andean Region (AR) and the Pacific Region (PR) of Southwestern Colombia, respectively. For the model, we used monthly rainfall lagged values of the eight large-scale climate indices linked to the El Niño Southern Oscillation (ENSO) phenomenon as exogenous variables. They were cross-correlated with the main modes of the rainfall variability of AR and PR obtained using NLPCA. Subsequently, both NNARMAX models were trained from 1983 to 2014 and tested for two years (2015–2016). Finally, the reconstructed outputs from the NNARMAX models were used as inputs for the Inverse NLPCA approach. The performance of the ANN approaches was measured using three different performance metrics: Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and Pearson’s correlation (r). The results showed suitable forecasting performance for AR and PR, and the combination of these ANN approaches demonstrated the possibility of rainfall forecasting in these sub-regions five months in advance and provided useful information for the decision-makers in Southwestern Colombia.
Monthly Rainfall Anomalies Forecasting for Southwestern Colombia Using Artificial Neural Networks Approaches
Teresita Canchala (Autor:in) / Wilfredo Alfonso-Morales (Autor:in) / Yesid Carvajal-Escobar (Autor:in) / Wilmar L. Cerón (Autor:in) / Eduardo Caicedo-Bravo (Autor:in)
2020
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
DOAJ | 2020
|Monthly rainfall forecasting using neural networks for sugarcane regions in Eastern Australia
Online Contents | 2016
|Monthly rainfall forecasting using neural networks for sugarcane regions in Eastern Australia
Online Contents | 2016
|Rainfall forecasting using neural networks
British Library Conference Proceedings | 1996
|Forecasting of Monthly Streamflows Based on Artificial Neural Networks
Online Contents | 2009
|