Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Bamboo as a Sustainable Building Material—Culm Characteristics and Properties
Bamboo culm is a renewable and lightweight material with high strength, particularly tensile strength. It is well accepted that bamboo culms have played a significant role in architecture because of their sustainable contribution. The culm characteristics and properties of three-year-old bamboo from five species (Dendrocalamus asper, Dendrocalamus sericeus, Dendrocalamus membranaceus, Thyrsostachys oliveri, and Phyllostachys makinoi) were investigated. The results show that each bamboo species has different culm characteristics along with culm length. Culm size, particularly the outer culm diameter and culm wall thickness, affects the ultimate load. These results confirm that a bigger culm with a thicker wall could receive more load. D. asper received the highest ultimate load, while T. oliveri received the lowest ultimate load. However, when calculating the test results for stress (load per cross-section area), P. Makinoi showed excellent mechanical properties, while D. asper showed the worst mechanical properties. This research promotes bamboo’s appropriate use for building applications and as a more sustainable material for architecture.
Bamboo as a Sustainable Building Material—Culm Characteristics and Properties
Bamboo culm is a renewable and lightweight material with high strength, particularly tensile strength. It is well accepted that bamboo culms have played a significant role in architecture because of their sustainable contribution. The culm characteristics and properties of three-year-old bamboo from five species (Dendrocalamus asper, Dendrocalamus sericeus, Dendrocalamus membranaceus, Thyrsostachys oliveri, and Phyllostachys makinoi) were investigated. The results show that each bamboo species has different culm characteristics along with culm length. Culm size, particularly the outer culm diameter and culm wall thickness, affects the ultimate load. These results confirm that a bigger culm with a thicker wall could receive more load. D. asper received the highest ultimate load, while T. oliveri received the lowest ultimate load. However, when calculating the test results for stress (load per cross-section area), P. Makinoi showed excellent mechanical properties, while D. asper showed the worst mechanical properties. This research promotes bamboo’s appropriate use for building applications and as a more sustainable material for architecture.
Bamboo as a Sustainable Building Material—Culm Characteristics and Properties
Kitti Chaowana (Autor:in) / Supanit Wisadsatorn (Autor:in) / Pannipa Chaowana (Autor:in)
2021
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
TIBKAT | 2020
|An overview on bamboo culm flattening
British Library Online Contents | 2018
|An overview on bamboo culm flattening
British Library Online Contents | 2018
|An overview on bamboo culm flattening
Elsevier | 2018
|