Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
System deployment and decentralized control of islanded AC microgrids without communication facility
This paper proposes a novel system deployment principle for master/slave type islanded alternating current (AC) microgrids, with which decentralized control can be achieved without communications. The net power of a microgrid, including active and reactive power, is metered and compensated locally and independently by its units. This can benefit a microgrid regarding system expandability, flexibility, and plug-and-play. The proposed strategy is demonstrated in a typical islanded AC microgrid with diesel generators, renewable generation, and hybrid storage. A diesel generator set with constant speed governor and static exciter runs to build up and dominate the main AC bus. An ultra-capacitor unit suppresses fast-varying power fluctuations, and the battery shares part of the slow-varying power component. The diesel generator set only provides slow-varying power within a lower limit, which can avoid dramatic accelerations and decelerations and low load-rate operation. Finally, simulations on MATLAB/Simulink are carried out to verify the proposed strategy in typical scenarios.
System deployment and decentralized control of islanded AC microgrids without communication facility
This paper proposes a novel system deployment principle for master/slave type islanded alternating current (AC) microgrids, with which decentralized control can be achieved without communications. The net power of a microgrid, including active and reactive power, is metered and compensated locally and independently by its units. This can benefit a microgrid regarding system expandability, flexibility, and plug-and-play. The proposed strategy is demonstrated in a typical islanded AC microgrid with diesel generators, renewable generation, and hybrid storage. A diesel generator set with constant speed governor and static exciter runs to build up and dominate the main AC bus. An ultra-capacitor unit suppresses fast-varying power fluctuations, and the battery shares part of the slow-varying power component. The diesel generator set only provides slow-varying power within a lower limit, which can avoid dramatic accelerations and decelerations and low load-rate operation. Finally, simulations on MATLAB/Simulink are carried out to verify the proposed strategy in typical scenarios.
System deployment and decentralized control of islanded AC microgrids without communication facility
Baoquan Liu (Autor:in)
2019
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
DOAJ | 2018
|Distributionally Robust Chance-Constrained Energy Management for Islanded Microgrids
BASE | 2019
|Predictive control of power flow between two islanded microgrids using nine-switch converter
American Institute of Physics | 2016
|Intelligent secondary control in smart microgrids: an on-line approach for islanded operations
Online Contents | 2018
|