Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Rehabilitation of a Vehicle Impact Damaged Concrete Bridge Girder with GFRP Rebars
Overpass bridge girders are susceptible to impact damage of over-height vehicles, creating a traffic hazard and structural deficiency. The repair for a damaged girder has to meet adequate criteria for the safety, repair time and economy. This paper presents a case study for the repair of such an impact damaged concrete girder on the Lyndon B. Johnson Express construction project, located on I-635 and I-35 freeways in Dallas, Texas. The impact caused concrete loss and exposed several restressing strands on the exterior girder. The overpass had been completed while the old route was open below, causing a temporary vertical lower clearance than the final design, leading to the impact. The novel and innovative repair process involved fiber glass (GFRP) rebars, bonding epoxy and repair mortar. These rebars enhanced the flexural capacity of the repaired section and supplemented the mortar strength. Onsite load testing was employed to verify the performance of the repaired structure. Theoretical model of the composite girder before and after repair was employed. The strain data from the model compared well with the load testing data. The repair scheme drastically increased the stiffness of the damaged girder, resulting in about 50% reduction in the bottom strains. The beneficial effect of the repair resulted in large increases in the net compressive stresses (200–300%) at the girder bottom through the increase of the section stiffness and reduction of the gravity load stresses. Stresses remained well below the elastic range for concrete and the GFRP rebars.
Rehabilitation of a Vehicle Impact Damaged Concrete Bridge Girder with GFRP Rebars
Overpass bridge girders are susceptible to impact damage of over-height vehicles, creating a traffic hazard and structural deficiency. The repair for a damaged girder has to meet adequate criteria for the safety, repair time and economy. This paper presents a case study for the repair of such an impact damaged concrete girder on the Lyndon B. Johnson Express construction project, located on I-635 and I-35 freeways in Dallas, Texas. The impact caused concrete loss and exposed several restressing strands on the exterior girder. The overpass had been completed while the old route was open below, causing a temporary vertical lower clearance than the final design, leading to the impact. The novel and innovative repair process involved fiber glass (GFRP) rebars, bonding epoxy and repair mortar. These rebars enhanced the flexural capacity of the repaired section and supplemented the mortar strength. Onsite load testing was employed to verify the performance of the repaired structure. Theoretical model of the composite girder before and after repair was employed. The strain data from the model compared well with the load testing data. The repair scheme drastically increased the stiffness of the damaged girder, resulting in about 50% reduction in the bottom strains. The beneficial effect of the repair resulted in large increases in the net compressive stresses (200–300%) at the girder bottom through the increase of the section stiffness and reduction of the gravity load stresses. Stresses remained well below the elastic range for concrete and the GFRP rebars.
Rehabilitation of a Vehicle Impact Damaged Concrete Bridge Girder with GFRP Rebars
Yazdani Nur (Autor:in) / Montero Maria (Autor:in)
2018
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Effect of GFRP Members in Retrofitting Damaged Steel Girder Bridge with RC Slab
British Library Conference Proceedings | 2000
|Remarks on bond of GFRP rebars and concrete
British Library Online Contents | 2016
|Bond of GFRP Rebars to Ordinary-Strength Concrete
British Library Conference Proceedings | 1993
|Field Durability Study of Vinyl-Ester—Based GFRP Rebars in Concrete Bridge Barriers
British Library Online Contents | 2018
|