Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Experimental Study on Flexural Behavior of RC–UHPC Slabs with EPS Lightweight Concrete Core
This paper presents an experimental investigation that focuses on the flexural behavior of an innovative reinforced concrete–ultra-high performance concrete slab with an expanded polystyrene lightweight concrete core. This type of slab is proposed to serve the semi-precast solution, in which the bottom layer is ultra-high performance concrete working as a formwork during the construction of semi-precast slab, the expanded polystyrene lightweight concrete layer is used for the reduction of structure self-weight, and the top layer is normal concrete designed to withstand compressive stress when the slab is loaded. Two similar large-scale specimens with dimensions of 6200 mm × 1000 mm × 210 mm were fabricated and tested under four-point bending conditions to investigate the flexural behavior of composite slab. Test results indicated that three different layers of materials can work effectively together without separation. The bottom ultra-high performance concrete layer leads to the high ductility of the slab and has a good effect in limiting the widening of the crack width by forming other cracks. According to design code ACI 544.4R, a modified distribution stress diagram on the composite section was proposed and proven to be suitable for the prediction of flexural strength of the composite section with an error of 3.4% compared to the experimental result. The effect of the ultra-high performance concrete layer on the flexural strength of the composite slab was clearly demonstrated, and for the case in this study, the ultra-high performance concrete layer improves the flexural strength of the slab by about 11.5%.
Experimental Study on Flexural Behavior of RC–UHPC Slabs with EPS Lightweight Concrete Core
This paper presents an experimental investigation that focuses on the flexural behavior of an innovative reinforced concrete–ultra-high performance concrete slab with an expanded polystyrene lightweight concrete core. This type of slab is proposed to serve the semi-precast solution, in which the bottom layer is ultra-high performance concrete working as a formwork during the construction of semi-precast slab, the expanded polystyrene lightweight concrete layer is used for the reduction of structure self-weight, and the top layer is normal concrete designed to withstand compressive stress when the slab is loaded. Two similar large-scale specimens with dimensions of 6200 mm × 1000 mm × 210 mm were fabricated and tested under four-point bending conditions to investigate the flexural behavior of composite slab. Test results indicated that three different layers of materials can work effectively together without separation. The bottom ultra-high performance concrete layer leads to the high ductility of the slab and has a good effect in limiting the widening of the crack width by forming other cracks. According to design code ACI 544.4R, a modified distribution stress diagram on the composite section was proposed and proven to be suitable for the prediction of flexural strength of the composite section with an error of 3.4% compared to the experimental result. The effect of the ultra-high performance concrete layer on the flexural strength of the composite slab was clearly demonstrated, and for the case in this study, the ultra-high performance concrete layer improves the flexural strength of the slab by about 11.5%.
Experimental Study on Flexural Behavior of RC–UHPC Slabs with EPS Lightweight Concrete Core
Tuan-Anh Cao (Autor:in) / Manh-Tuan Nguyen (Autor:in) / Thai-Hoan Pham (Autor:in) / Dang-Nguyen Nguyen (Autor:in)
2023
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Experimental Study on the Flexural Behavior of Hollow Core Concrete Slabs
British Library Conference Proceedings | 2017
|Experimental Study on the Flexural Behavior of Hollow Core Concrete Slabs
Trans Tech Publications | 2016
|Experimental Study on Flexural Behaviors of All-Lightweight Aggregate Concrete Slabs
Trans Tech Publications | 2012
|Flexural Behavior of Post-tensioned Lightweight Concrete Continuous One-Way Slabs
Springer Verlag | 2016
|