Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Prediction of earth pressure balance for EPB-TBM using machine learning algorithms
Abstract Face stability control of excavation with earth pressure balance machine (EPB) approach is the best available method to reduce the ground deformation and settlement of surface structures in a tunneling project in urban areas. In the present paper, several models have proposed through a statistical method, including feed-forward stepwise regression (FSR) and machine learning techniques such as support vector machine (SVM), Takagi–Sugeno fuzzy model (TS), and multilayer perceptron neural network (ANN-MLP), to provide a predictive strategy for EPB machine during the tunnel excavation. For this purpose, a monitoring dataset of machine performance parameters including advance speed, screw conveyor speed, screw conveyor torque, thrust force, and cutterhead rotation speed from Tehran Metro Line 6 Southern Extension Sector (TML6-SE) has been compiled. Then, the relation between the performance parameters and target values were investigated to analyze the available inputs and offer a new equation using the FSR. Moreover, evaluation metrics and loss functions were utilized for the evaluation of the developed models’ efficiency. The results proved the significance of the presented methods in this paper that could be used to predict the earth pressure balance operation with high efficiency.
Prediction of earth pressure balance for EPB-TBM using machine learning algorithms
Abstract Face stability control of excavation with earth pressure balance machine (EPB) approach is the best available method to reduce the ground deformation and settlement of surface structures in a tunneling project in urban areas. In the present paper, several models have proposed through a statistical method, including feed-forward stepwise regression (FSR) and machine learning techniques such as support vector machine (SVM), Takagi–Sugeno fuzzy model (TS), and multilayer perceptron neural network (ANN-MLP), to provide a predictive strategy for EPB machine during the tunnel excavation. For this purpose, a monitoring dataset of machine performance parameters including advance speed, screw conveyor speed, screw conveyor torque, thrust force, and cutterhead rotation speed from Tehran Metro Line 6 Southern Extension Sector (TML6-SE) has been compiled. Then, the relation between the performance parameters and target values were investigated to analyze the available inputs and offer a new equation using the FSR. Moreover, evaluation metrics and loss functions were utilized for the evaluation of the developed models’ efficiency. The results proved the significance of the presented methods in this paper that could be used to predict the earth pressure balance operation with high efficiency.
Prediction of earth pressure balance for EPB-TBM using machine learning algorithms
Hanan Samadi (Autor:in) / Jafar Hassanpour (Autor:in) / Jamal Rostami (Autor:in)
2023
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Prediction and Feature Importance of Earth Pressure in Shields Using Machine Learning Algorithms
Springer Verlag | 2023
|Earth Pressure Balance Machine Cutterhead Torque Modeling: Learning from Machine Data
British Library Conference Proceedings | 2015
|Argentina's first earth pressure balance tunnel boring machine
British Library Conference Proceedings | 1998
|Earth Pressure Balance Shields
Wiley | 2012
|