Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Filtering Capability of Porous Asphalt Pavements
The objective of this study is to assess the filtering capability of porous asphalt pavement models and the quality of rainwater filtered by such models. Three slabs of porous asphalt mixtures and two models composed of porous layers that resulted in porous pavement structures were produced. Data were collected in two phases: using rainwater directly from the sky and then using stormwater runoff collected from a street. Parameters such as pH, dissolved oxygen, ammonia, phosphorus, nitrite, aluminium, chromium, copper, zinc, and iron were measured. For both rainwater and stormwater runoff quality analyses, there was an increase in the concentration of the following parameters: phosphorus, iron, aluminium, zinc, nitrite, chromium, copper, and pH; there was no significant variation in the concentration of dissolved oxygen; and there was a decrease in ammonia in one of the models. However, the concentrations of only phosphorus and aluminium exceeded the limits established by the Brazilian National Environmental Council and National Water Agency for the use of non-potable water. The models were capable of filtering rainwater and stormwater runoff, and reducing the concentration of ammonia. It can be concluded that it is possible to collect stormwater runoff from porous asphalt surfaces and porous asphalt pavements. Porous asphalt pavements are able to filter out certain pollutants from stormwater runoff and rainwater, and were shown to be an alternative to supply rainwater for non-potable uses and to recharge the water table.
Filtering Capability of Porous Asphalt Pavements
The objective of this study is to assess the filtering capability of porous asphalt pavement models and the quality of rainwater filtered by such models. Three slabs of porous asphalt mixtures and two models composed of porous layers that resulted in porous pavement structures were produced. Data were collected in two phases: using rainwater directly from the sky and then using stormwater runoff collected from a street. Parameters such as pH, dissolved oxygen, ammonia, phosphorus, nitrite, aluminium, chromium, copper, zinc, and iron were measured. For both rainwater and stormwater runoff quality analyses, there was an increase in the concentration of the following parameters: phosphorus, iron, aluminium, zinc, nitrite, chromium, copper, and pH; there was no significant variation in the concentration of dissolved oxygen; and there was a decrease in ammonia in one of the models. However, the concentrations of only phosphorus and aluminium exceeded the limits established by the Brazilian National Environmental Council and National Water Agency for the use of non-potable water. The models were capable of filtering rainwater and stormwater runoff, and reducing the concentration of ammonia. It can be concluded that it is possible to collect stormwater runoff from porous asphalt surfaces and porous asphalt pavements. Porous asphalt pavements are able to filter out certain pollutants from stormwater runoff and rainwater, and were shown to be an alternative to supply rainwater for non-potable uses and to recharge the water table.
Filtering Capability of Porous Asphalt Pavements
Liseane Padilha Thives (Autor:in) / Enedir Ghisi (Autor:in) / Douglas Gherardt Brecht (Autor:in) / Dario Menegasso Pires (Autor:in)
2018
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Winter Maintenance of Porous Asphalt Pavements
British Library Conference Proceedings | 2003
|Winter Maintenance of Porous Asphalt Pavements
British Library Conference Proceedings | 2003
|Engineering Index Backfile | 1911
|Engineering Index Backfile | 1924
|Engineering Index Backfile | 1894