Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Selective Immobilization of Aceticlastic Methanogens to Support Material [Translated]†
The effect of electrostatic and hydrophobic properties of microbes in anaerobic sludge on immobilization to support materials was examined. The most popular aceticlastic methanogen, Methanosaeta concilii, was uncharged and hydrophobic. Methanosarcina barkeri of a methyltrophic methanogen, and acidogens cultivated selectively from anaerobic sludge, were negatively charged and hydrophobic. Immobilized microbes on support materials were incubated with sodium acetate. Methanogens were dramatically immobilized to bamboo charcoal, in contact with hydrophilic alumina. Methanosaeta-like microbes were immobilized to bamboo charcoal. These results indicate that the hydrophobic and negatively-charged support material that can suppress the immobilization of microbes except for Methanosaeta species is suitable for selective immobilization of Methanosaeta species, which is the most important microbe in methane fermentation.† This paper, appeared originally in Japanese in J. Soc. Powder Technology, Japan, 43, 653-659 (2006), is published in KONA Powder and Particle Journal with the permission of the editorial committee of the Soc. Powder Technology, Japan.
Selective Immobilization of Aceticlastic Methanogens to Support Material [Translated]†
The effect of electrostatic and hydrophobic properties of microbes in anaerobic sludge on immobilization to support materials was examined. The most popular aceticlastic methanogen, Methanosaeta concilii, was uncharged and hydrophobic. Methanosarcina barkeri of a methyltrophic methanogen, and acidogens cultivated selectively from anaerobic sludge, were negatively charged and hydrophobic. Immobilized microbes on support materials were incubated with sodium acetate. Methanogens were dramatically immobilized to bamboo charcoal, in contact with hydrophilic alumina. Methanosaeta-like microbes were immobilized to bamboo charcoal. These results indicate that the hydrophobic and negatively-charged support material that can suppress the immobilization of microbes except for Methanosaeta species is suitable for selective immobilization of Methanosaeta species, which is the most important microbe in methane fermentation.† This paper, appeared originally in Japanese in J. Soc. Powder Technology, Japan, 43, 653-659 (2006), is published in KONA Powder and Particle Journal with the permission of the editorial committee of the Soc. Powder Technology, Japan.
Selective Immobilization of Aceticlastic Methanogens to Support Material [Translated]†
Toshiyuki Nomura (Autor:in) / Takanori Nagao (Autor:in) / Akinori Yoshihara (Autor:in) / Hayato Tokumoto (Autor:in) / Yasuhiro Konishi (Autor:in)
2014
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
A New Role for Autotrophic Methanogens?
Wiley | 2005
|CO2 IMMOBILIZATION MATERIAL AND METHOD FOR PRODUCING CO2 IMMOBILIZATION PRODUCT
Europäisches Patentamt | 2024
|