Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
The impact of soil suction variation on earthquake intensity indices
Soil properties can completely change the ground motion characteristics as they travel from the bedrock to the surface because, soil as a low-pass filter, may amplify or deamplify seismic motions in some frequencies on the wave travelling path. Recent studies about the advanced unsaturated soil mechanics clearly shows that dynamic properties of soils, including small-strain shear modulus (Gmax), shear modulus reduction (G/Gmax), and damping ratio (D) curves are affected by changes in the soil suction level. The current study present nonlinear time-dependent analysis of three different unsaturated soils available in the literature with different ranges of nonlinear behaviour that earlier have been studied on unsaturated dynamic models. Since, the earthquake intensity parameters can be used to describe the damage potential of an earthquake, the focus of this paper is to evaluate the impact of the suction variation on the engineering ground motion parameters, including peak values of strong motion, Vmax/Amax, root-mean-square acceleration, Arias intensity, characteristic intensity, cumulative absolute velocity, acceleration spectrum intensity, effective design acceleration, A95 parameter and predominant period separately under the near-field and the far-field seismicity categories.
The impact of soil suction variation on earthquake intensity indices
Soil properties can completely change the ground motion characteristics as they travel from the bedrock to the surface because, soil as a low-pass filter, may amplify or deamplify seismic motions in some frequencies on the wave travelling path. Recent studies about the advanced unsaturated soil mechanics clearly shows that dynamic properties of soils, including small-strain shear modulus (Gmax), shear modulus reduction (G/Gmax), and damping ratio (D) curves are affected by changes in the soil suction level. The current study present nonlinear time-dependent analysis of three different unsaturated soils available in the literature with different ranges of nonlinear behaviour that earlier have been studied on unsaturated dynamic models. Since, the earthquake intensity parameters can be used to describe the damage potential of an earthquake, the focus of this paper is to evaluate the impact of the suction variation on the engineering ground motion parameters, including peak values of strong motion, Vmax/Amax, root-mean-square acceleration, Arias intensity, characteristic intensity, cumulative absolute velocity, acceleration spectrum intensity, effective design acceleration, A95 parameter and predominant period separately under the near-field and the far-field seismicity categories.
The impact of soil suction variation on earthquake intensity indices
Biglari Mahnoosh (Autor:in) / Fouladi Farshad (Autor:in) / Ashayeri Iman (Autor:in)
2016
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Variation of unsaturated soil shear strength parameters with suction
British Library Conference Proceedings | 1995
|Wiley | 2015
|Research on Intensity Measures of Simulated Spatial Variation Earthquake Ground Motions
British Library Conference Proceedings | 2009
|Variation of Resilient Modulus with Soil Suction for Compacted Subgrade Soils
British Library Online Contents | 2005
|