Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Grand Fir Nutrient Management in the Inland Northwestern USA
Grand fir (Abies grandis (Douglas ex D. Don) Lindley) is widely distributed in the moist forests of the Inland Northwest. It has high potential productivity, its growth being nearly equal to western white pine, the most productive species in the region. There are large standing volumes of grand fir in the region. Nutritionally, the species has higher foliage cation concentrations than associated conifers, especially potassium (K) and calcium (Ca). In contrast, it has lower nitrogen (N) foliage concentrations, which creates favorable nutrient balance on N-limited sites. Despite concentration differences, grand fir stores proportionally more nutrients per tree than associated species because of greater crown biomass. Although few fertilization trials have examined grand fir specifically, its response is inferred from its occurrence in many monitored mixed conifer stands. Fertilization trials including grand fir either as a major or minor component show that it has a strong diameter and height growth response ranging from 15% to 50% depending in part on site moisture availability and soil geology. Grand fir tends to have a longer response duration than other inland conifers. When executed concurrently with thinning, fertilization often increases the total response. Late rotation application of N provides solid investment returns in carefully selected stands. Although there are still challenges with the post-fertilization effects on tree mortality, grand fir will continue to be an important species with good economic values and beneficial responses to fertilization and nutrient management.
Grand Fir Nutrient Management in the Inland Northwestern USA
Grand fir (Abies grandis (Douglas ex D. Don) Lindley) is widely distributed in the moist forests of the Inland Northwest. It has high potential productivity, its growth being nearly equal to western white pine, the most productive species in the region. There are large standing volumes of grand fir in the region. Nutritionally, the species has higher foliage cation concentrations than associated conifers, especially potassium (K) and calcium (Ca). In contrast, it has lower nitrogen (N) foliage concentrations, which creates favorable nutrient balance on N-limited sites. Despite concentration differences, grand fir stores proportionally more nutrients per tree than associated species because of greater crown biomass. Although few fertilization trials have examined grand fir specifically, its response is inferred from its occurrence in many monitored mixed conifer stands. Fertilization trials including grand fir either as a major or minor component show that it has a strong diameter and height growth response ranging from 15% to 50% depending in part on site moisture availability and soil geology. Grand fir tends to have a longer response duration than other inland conifers. When executed concurrently with thinning, fertilization often increases the total response. Late rotation application of N provides solid investment returns in carefully selected stands. Although there are still challenges with the post-fertilization effects on tree mortality, grand fir will continue to be an important species with good economic values and beneficial responses to fertilization and nutrient management.
Grand Fir Nutrient Management in the Inland Northwestern USA
Dennis R. Parent (Autor:in) / Mark D. Coleman (Autor:in)
2016
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Groundwater discharge in downstream of an Arid Inland River in Northwestern China
Online Contents | 2016
|Recharge and loss of groundwater during freezing-thawing period in inland basin, Northwestern China
British Library Online Contents | 2005
|Integrated assessment of the grand nutrient cycles
Springer Verlag | 1997
|Scenario analysis for nutrient emission reduction in the European inland waters
DOAJ | 2014
|How EU policies could reduce nutrient pollution in European inland and coastal waters
BASE | 2021
|