Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Induced Partial Saturation Using Pseudomonas stutzeri Biogas for Mitigate Structure Settlement
Induced partial saturation (IPS) is a new foundation treatment method for mitigating soil liquefaction using biogas. A series of laboratory tests were performed to demonstrate the influencing factors of IPS using Pseudomonas stutzeri biogas. On the basis of the optimal biogas production conditions, the intervention effect of Pseudomonas stutzeri biogas on the foundation deformation under buildings was investigated based on shaking table tests. The test results showed that the best carbon source in the denitrification process of Pseudomonas stutzeri biogas is sodium citrate. The most effective initial value of optical density-based concentration was 0.1. The carbon–nitrogen ratio (C/N) of the bacterium suspension was used as the index to control the saturation. The degree of saturation reduction showed a good linear correlation with the C/N. The optimum temperature of this method was between 20 °C and 30 °C. The most suitable pH value was between 7 and 9. The environmental factors had minimal influence on the degree of saturation reduction but had a significant effect on the average rate of gas generation and the period of initial stagnation. After Pseudomonas stutzeri biogas desaturation, the settlement of the building was greatly reduced. The settlement of saturation of 92.5% sand foundation reached 17.1 mm, and the 85% saturation was only 10.6 mm. These results provide a good foundation for the feasibility of utilizing Pseudomonas stutzeri biogas mitigation of the liquefaction hazard of sand.
Induced Partial Saturation Using Pseudomonas stutzeri Biogas for Mitigate Structure Settlement
Induced partial saturation (IPS) is a new foundation treatment method for mitigating soil liquefaction using biogas. A series of laboratory tests were performed to demonstrate the influencing factors of IPS using Pseudomonas stutzeri biogas. On the basis of the optimal biogas production conditions, the intervention effect of Pseudomonas stutzeri biogas on the foundation deformation under buildings was investigated based on shaking table tests. The test results showed that the best carbon source in the denitrification process of Pseudomonas stutzeri biogas is sodium citrate. The most effective initial value of optical density-based concentration was 0.1. The carbon–nitrogen ratio (C/N) of the bacterium suspension was used as the index to control the saturation. The degree of saturation reduction showed a good linear correlation with the C/N. The optimum temperature of this method was between 20 °C and 30 °C. The most suitable pH value was between 7 and 9. The environmental factors had minimal influence on the degree of saturation reduction but had a significant effect on the average rate of gas generation and the period of initial stagnation. After Pseudomonas stutzeri biogas desaturation, the settlement of the building was greatly reduced. The settlement of saturation of 92.5% sand foundation reached 17.1 mm, and the 85% saturation was only 10.6 mm. These results provide a good foundation for the feasibility of utilizing Pseudomonas stutzeri biogas mitigation of the liquefaction hazard of sand.
Induced Partial Saturation Using Pseudomonas stutzeri Biogas for Mitigate Structure Settlement
Meitong Lv (Autor:in) / Dingwen Zhang (Autor:in) / Erxing Peng (Autor:in) / Yinhe Guo (Autor:in)
2024
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Desaturation for Liquefaction Mitigation Using Biogas Produced by Pseudomonas stutzeri
British Library Online Contents | 2018
|Biodegradation mechanism of biphenyl by a strain of Pseudomonas stutzeri
Taylor & Francis Verlag | 2011
|Denitrification and Chemotaxis of Pseudomonas Stutzeri<-i> KC in Porous Media
Online Contents | 2006
|Centrifuge Testing to Evaluate and Mitigate Liquefaction-Induced Building Settlement Mechanisms
Online Contents | 2010
|