Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Flexible unbalanced control with peak current limitation for virtual synchronous generator under voltage sags
Abstract Virtual synchronous generator (VSG) is grid-friendly for integrating distributed generations (DGs) since it can emulate the operation mechanism of traditional synchronous generator (SG). However, the traditional VSG control strategy, which is mainly suitable for balanced voltage conditions, may lead to power oscillations, current unbalance and even overcurrent under unbalanced voltage sags. To overcome this difficulty, a flexible unbalanced control with peak current limitation for VSG under unbalanced operating conditions is proposed. Based on the basic VSG control algorithm, the control strategy integrates two novel control modules, which are current reference generator (CRG) and power reference generator (PRG). The proposed control strategy can flexibly meet different operation demands, which includes current balancing, constant active or reactive power. And the injected currents are kept within safety values for a better utilization of the VSG power capacity. Furthermore, the experimental platform is built. Experimental results demonstrate the validness and effectiveness of the proposed control strategy.
Flexible unbalanced control with peak current limitation for virtual synchronous generator under voltage sags
Abstract Virtual synchronous generator (VSG) is grid-friendly for integrating distributed generations (DGs) since it can emulate the operation mechanism of traditional synchronous generator (SG). However, the traditional VSG control strategy, which is mainly suitable for balanced voltage conditions, may lead to power oscillations, current unbalance and even overcurrent under unbalanced voltage sags. To overcome this difficulty, a flexible unbalanced control with peak current limitation for VSG under unbalanced operating conditions is proposed. Based on the basic VSG control algorithm, the control strategy integrates two novel control modules, which are current reference generator (CRG) and power reference generator (PRG). The proposed control strategy can flexibly meet different operation demands, which includes current balancing, constant active or reactive power. And the injected currents are kept within safety values for a better utilization of the VSG power capacity. Furthermore, the experimental platform is built. Experimental results demonstrate the validness and effectiveness of the proposed control strategy.
Flexible unbalanced control with peak current limitation for virtual synchronous generator under voltage sags
Tianwen ZHENG (Autor:in) / Laijun CHEN (Autor:in) / Yan GUO (Autor:in) / Shengwei MEI (Autor:in)
2017
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
DOAJ | 2018
|Mainstream Traffic Flow Control at Sags
British Library Online Contents | 2014
|DOAJ | 2022
|