Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
ZASTOSOWANIE SIECI NEURONOWYCH TYPU HOPFIELDA W DIAGNOSTYCE NAWIERZCHNI DROGOWYCH
Artykuł dotyczy zagadnień diagnostyki nawierzchni drogowych z wykorzystaniem metod przetwarzania obrazów cyfrowych wspomaganych zastosowaniem sieci neuronowej typu Hopfielda w procesie wzajemnego dopasowania pikseli pary obrazów nawierzchni drogi. Para obrazów rejestrowana z wykorzystaniem stereowizyjnego mobilnego stanowiska pomiarowego, opracowanego przez autora, definiowana jest jako stereo-obraz drogi. W artykule opisano ograniczenia rozwiązań stereowizyjnych oraz przedstawiono problem niejednoznaczności dopasowania dla obszarów o jednakowej intensywności. Określono problem obiektów przesłaniających się w polu widzenia kamer, zidentyfikowano ograniczenia ciągłości wynikające z nagłej zmiany funkcji intensywności obrazów, oraz zwrócono uwagę na typowe ograniczenia związane z przetwarzaniem i rozpoznawaniem obrazów cyfrowych. Podczas implementacji sieci neuronowej zdefiniowano kryteria, których minimalizacja jako składowych funkcji energii pozwoliła na uzyskanie optymalnego dopasowania pikseli stereo-obrazów, tym samym właściwego odwzorowania nawierzchni drogowej. Do rozwiązania zadania optymalizacji wielokryterialnej zaproponowano kryteria maksymalizacji i jednoznaczności dopasowania pikseli oraz kolejności przyporządkowania sekwencji pikseli w obu stereo-obrazach, a także kryterium ciągłości mapy dysparycji. Opis matematyczny składowych energii sieci neuronowej określono w artykule. Ocenę zastosowania sieci neuronowej zdefiniowano jako różnicę pomiędzy pomiarami głębi z wykorzystaniem sieci neuronowej oraz bez jej zastosowania. Do oceny zaproponowanego rozwiązania przeprowadzono pomiary z wykorzystaniem mobilnego stanowiska stereowizyjnego, które porównano z pomiarami statycznymi z wykorzystaniem skanowania laserowego w zdefiniowanych przekrojach pomiarowych drogi. Zastosowana sieć neuronowa typu Hopfielda pozwoliła na zwiększenie liczby pikseli poprawnie przypisanych w procesie dopasowania pikseli stereo-obrazów. Zwiększyło to tym samym precyzję odwzorowania nawierzchni drogowej, tym samym oceny jest stanu.
ZASTOSOWANIE SIECI NEURONOWYCH TYPU HOPFIELDA W DIAGNOSTYCE NAWIERZCHNI DROGOWYCH
Artykuł dotyczy zagadnień diagnostyki nawierzchni drogowych z wykorzystaniem metod przetwarzania obrazów cyfrowych wspomaganych zastosowaniem sieci neuronowej typu Hopfielda w procesie wzajemnego dopasowania pikseli pary obrazów nawierzchni drogi. Para obrazów rejestrowana z wykorzystaniem stereowizyjnego mobilnego stanowiska pomiarowego, opracowanego przez autora, definiowana jest jako stereo-obraz drogi. W artykule opisano ograniczenia rozwiązań stereowizyjnych oraz przedstawiono problem niejednoznaczności dopasowania dla obszarów o jednakowej intensywności. Określono problem obiektów przesłaniających się w polu widzenia kamer, zidentyfikowano ograniczenia ciągłości wynikające z nagłej zmiany funkcji intensywności obrazów, oraz zwrócono uwagę na typowe ograniczenia związane z przetwarzaniem i rozpoznawaniem obrazów cyfrowych. Podczas implementacji sieci neuronowej zdefiniowano kryteria, których minimalizacja jako składowych funkcji energii pozwoliła na uzyskanie optymalnego dopasowania pikseli stereo-obrazów, tym samym właściwego odwzorowania nawierzchni drogowej. Do rozwiązania zadania optymalizacji wielokryterialnej zaproponowano kryteria maksymalizacji i jednoznaczności dopasowania pikseli oraz kolejności przyporządkowania sekwencji pikseli w obu stereo-obrazach, a także kryterium ciągłości mapy dysparycji. Opis matematyczny składowych energii sieci neuronowej określono w artykule. Ocenę zastosowania sieci neuronowej zdefiniowano jako różnicę pomiędzy pomiarami głębi z wykorzystaniem sieci neuronowej oraz bez jej zastosowania. Do oceny zaproponowanego rozwiązania przeprowadzono pomiary z wykorzystaniem mobilnego stanowiska stereowizyjnego, które porównano z pomiarami statycznymi z wykorzystaniem skanowania laserowego w zdefiniowanych przekrojach pomiarowych drogi. Zastosowana sieć neuronowa typu Hopfielda pozwoliła na zwiększenie liczby pikseli poprawnie przypisanych w procesie dopasowania pikseli stereo-obrazów. Zwiększyło to tym samym precyzję odwzorowania nawierzchni drogowej, tym samym oceny jest stanu.
ZASTOSOWANIE SIECI NEURONOWYCH TYPU HOPFIELDA W DIAGNOSTYCE NAWIERZCHNI DROGOWYCH
Marcin STANIEK (Autor:in)
2016
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Regeneracja bitumicznych nawierzchni drogowych modyfikatorami otrzymywanymi z surowców ekologicznych
DOAJ | 2016
|DOAJ | 2016
|