Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
ResNet Based on Multi-Feature Attention Mechanism for Sound Classification in Noisy Environments
Environmental noise affects people’s lives and poses challenges for urban sound classification. Traditional algorithms such as Mel frequency cepstral coefficients (MFCCs) struggle due to audio signal complexity. This study applied an attention mechanism to a deep residual network (ResNet) deep learning network to overcome the structural impact of urban noise on audio signals and improve classification accuracy. We propose a three-feature fusion ResNet + attention method (Net50_SE) to maximize information representation in environmental sound signals. This method uses residual structured convolutional neural networks (CNNs) for feature extraction in sound classification tasks. Additionally, an attention module is added to suppress environmental noise impact and focus on different feature map channels. The experimental results demonstrate the effectiveness of our method, achieving 93.2% accuracy compared with 82.87% with CNN and 84.77% with long short-term memory (LSTM). Our model provides higher accuracy and confidence in urban sound classification.
ResNet Based on Multi-Feature Attention Mechanism for Sound Classification in Noisy Environments
Environmental noise affects people’s lives and poses challenges for urban sound classification. Traditional algorithms such as Mel frequency cepstral coefficients (MFCCs) struggle due to audio signal complexity. This study applied an attention mechanism to a deep residual network (ResNet) deep learning network to overcome the structural impact of urban noise on audio signals and improve classification accuracy. We propose a three-feature fusion ResNet + attention method (Net50_SE) to maximize information representation in environmental sound signals. This method uses residual structured convolutional neural networks (CNNs) for feature extraction in sound classification tasks. Additionally, an attention module is added to suppress environmental noise impact and focus on different feature map channels. The experimental results demonstrate the effectiveness of our method, achieving 93.2% accuracy compared with 82.87% with CNN and 84.77% with long short-term memory (LSTM). Our model provides higher accuracy and confidence in urban sound classification.
ResNet Based on Multi-Feature Attention Mechanism for Sound Classification in Noisy Environments
Chao Yang (Autor:in) / Xingli Gan (Autor:in) / Antao Peng (Autor:in) / Xiaoyu Yuan (Autor:in)
2023
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
ResNet-Based Classification for Leaf Disease Detection
Springer Verlag | 2025
|ResNet-Based Classification for Leaf Disease Detection
Springer Verlag | 2025
|Multi-label classification of retinal diseases based on fundus images using Resnet and Transformer
Springer Verlag | 2024
|BUILDING IN NOISY ENVIRONMENTS
Taylor & Francis Verlag | 1983
|