Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
A new acridine-based photosensitizer with ultra-low light requirement efficiently inactivates carbapenem-resistant Acinetobacter baumannii and methicillin-resistant Staphylococcus aureus and degrades their antibiotic resistance genes
The spread of antibiotic resistant pathogens and antibiotic resistance genes (ARGs) in the environment poses a serious threat to public health. However, existing methods are difficult to effectively remove antibiotic resistant pathogens and ARGs from the environment. In this study, we synthesized a new acridine-based photosensitizer, 2,7-dibromo-9-mesityl-10-methylacridinium perchlorate (YM-3), by the heavy atom effect, which could photodynamically inactivate antibiotic resistant pathogens and reduce ARGs by generating singlet oxygen (1O2) in an aqueous environment. The 1O2 yield of YM-3 was 4.9 times that of its modified precursor. YM-3 could reduce the culturable number and even the viable counts of methicillin-resistant Staphylococcus aureus and carbapenem-resistant Acinetobacter baumannii to 0 (inactivation rate > 99.99999%) after 2 and 8 h of low-intensity blue light (15 W/m2) irradiation, respectively. After 20 h of light exposure, the copy numbers of ARGs in both bacteria were reduced by 5.80 and 4.48 log, respectively, which might indicate that ARGs had been degraded. In addition, YM-3 still had an efficient bactericidal effect after five inactivation cycle. These characteristics of ultra-low light intensity requirement and efficient bactericidal ability make YM-3 have good application prospects for disinfection in indoor and sunlight environment.
A new acridine-based photosensitizer with ultra-low light requirement efficiently inactivates carbapenem-resistant Acinetobacter baumannii and methicillin-resistant Staphylococcus aureus and degrades their antibiotic resistance genes
The spread of antibiotic resistant pathogens and antibiotic resistance genes (ARGs) in the environment poses a serious threat to public health. However, existing methods are difficult to effectively remove antibiotic resistant pathogens and ARGs from the environment. In this study, we synthesized a new acridine-based photosensitizer, 2,7-dibromo-9-mesityl-10-methylacridinium perchlorate (YM-3), by the heavy atom effect, which could photodynamically inactivate antibiotic resistant pathogens and reduce ARGs by generating singlet oxygen (1O2) in an aqueous environment. The 1O2 yield of YM-3 was 4.9 times that of its modified precursor. YM-3 could reduce the culturable number and even the viable counts of methicillin-resistant Staphylococcus aureus and carbapenem-resistant Acinetobacter baumannii to 0 (inactivation rate > 99.99999%) after 2 and 8 h of low-intensity blue light (15 W/m2) irradiation, respectively. After 20 h of light exposure, the copy numbers of ARGs in both bacteria were reduced by 5.80 and 4.48 log, respectively, which might indicate that ARGs had been degraded. In addition, YM-3 still had an efficient bactericidal effect after five inactivation cycle. These characteristics of ultra-low light intensity requirement and efficient bactericidal ability make YM-3 have good application prospects for disinfection in indoor and sunlight environment.
A new acridine-based photosensitizer with ultra-low light requirement efficiently inactivates carbapenem-resistant Acinetobacter baumannii and methicillin-resistant Staphylococcus aureus and degrades their antibiotic resistance genes
Xiaojie Xu (Autor:in) / Min Yang (Autor:in) / Yunhan Jiang (Autor:in) / Ningyao Tao (Autor:in) / Yulong Fu (Autor:in) / Jiahui Fan (Autor:in) / Xin Xu (Autor:in) / Huixiang Shi (Autor:in) / Zhan Lu (Autor:in) / Chaofeng Shen (Autor:in)
2023
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Molecular genetics of methicillin-resistant Staphylococcus aureus
British Library Online Contents | 2002
|Surveillance of Methicillin-Resistant Staphylococcus Aureus in a Periodontal Clinic
UB Braunschweig | 2013
|