Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Deep learning in fault detection and diagnosis of building HVAC systems: A systematic review with meta analysis
Building sector account for significant global energy consumption and Heating Ventilation and Air Conditioning (HVAC) systems contribute to the highest portion of building energy consumption. Therefore, the potential for energy saving by improving the efficiency of HVAC systems is huge and various fault detection and diagnosis (FDD) methods have been studied for this purpose. Although amongst all types of existing FDD methods, data-driven based ones are regarded as the most effective methods. As a relatively new branch of data-driven approaches, deep learning (DL) methods have shown promising results, a comprehensive review of DL applications in this area is absent. To fill the research gap, this systematic review with meta analysis analyses the relevant studies both quantitatively and qualitatively. The review is conducted by searching Web of Science, ScienceDirect, and Semantic search. There are 47 eligible studies included in this review following the preferred reporting items for systematic reviews and meta-analyses (PRISMA) protocol. 6 out of the 47 studies are identified as eligible for meta analysis of the effectiveness of DL methods for FDD. The most used DL method is 2D convolutional neural network (CNN). Results suggest that DL methods show promising results as a HVAC FDD. However, most studies use simulation/lab experiment data and real-world complexities are not fully investigated. Therefore, DL methods need to be further tested with real-world scenarios to support decision-making.
Deep learning in fault detection and diagnosis of building HVAC systems: A systematic review with meta analysis
Building sector account for significant global energy consumption and Heating Ventilation and Air Conditioning (HVAC) systems contribute to the highest portion of building energy consumption. Therefore, the potential for energy saving by improving the efficiency of HVAC systems is huge and various fault detection and diagnosis (FDD) methods have been studied for this purpose. Although amongst all types of existing FDD methods, data-driven based ones are regarded as the most effective methods. As a relatively new branch of data-driven approaches, deep learning (DL) methods have shown promising results, a comprehensive review of DL applications in this area is absent. To fill the research gap, this systematic review with meta analysis analyses the relevant studies both quantitatively and qualitatively. The review is conducted by searching Web of Science, ScienceDirect, and Semantic search. There are 47 eligible studies included in this review following the preferred reporting items for systematic reviews and meta-analyses (PRISMA) protocol. 6 out of the 47 studies are identified as eligible for meta analysis of the effectiveness of DL methods for FDD. The most used DL method is 2D convolutional neural network (CNN). Results suggest that DL methods show promising results as a HVAC FDD. However, most studies use simulation/lab experiment data and real-world complexities are not fully investigated. Therefore, DL methods need to be further tested with real-world scenarios to support decision-making.
Deep learning in fault detection and diagnosis of building HVAC systems: A systematic review with meta analysis
Fan Zhang (Autor:in) / Nausheen Saeed (Autor:in) / Paria Sadeghian (Autor:in)
2023
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Cross-level fault detection and diagnosis of building HVAC systems
Online Contents | 2011
|Cross-level fault detection and diagnosis of building HVAC systems
British Library Online Contents | 2011
|Fault Detection and Diagnosis of HVAC Systems
British Library Online Contents | 1999
|Fault Detection and Diagnosis of HVAC Systems
British Library Conference Proceedings | 1999
|