Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Analysis of embankment slope stability: the comparison of finite element limit analysis with limit equilibrium methods
This paper presented the analysis of embankment slope stability by considering the problem of embankment slope stability with special effects that it was filled with sand and was placed on purely cohesive clay. The finite element limit analysis of two-dimensional plane strain was employed to analyze the stability of this problem. The embankment slope height (H), the depth factors (d/H) and the embankment slope angle (β) for the finite element limit analysis of sand was modeled as a volume element with the properties of Mohr-Coulomb material in drained condition. And the clay was modeled as a volume element with the properties of Tresca material in undrained condition where the parameters were soil unit weight (γ), undrained shear strength (su) and friction angle (φ′). Parametric studies consisted of three dimensionless variables including depth factors (d/H), friction angle (φ′) and embankment slope angle (β). Results were summarized in the form of the dimensionless stability number (su/γH(FS)) and the design chart and application were presented. In addition, the comparison of the solution of stability number with the limit equilibrium methods and the failure mechanisms were also proposed in this paper.
Analysis of embankment slope stability: the comparison of finite element limit analysis with limit equilibrium methods
This paper presented the analysis of embankment slope stability by considering the problem of embankment slope stability with special effects that it was filled with sand and was placed on purely cohesive clay. The finite element limit analysis of two-dimensional plane strain was employed to analyze the stability of this problem. The embankment slope height (H), the depth factors (d/H) and the embankment slope angle (β) for the finite element limit analysis of sand was modeled as a volume element with the properties of Mohr-Coulomb material in drained condition. And the clay was modeled as a volume element with the properties of Tresca material in undrained condition where the parameters were soil unit weight (γ), undrained shear strength (su) and friction angle (φ′). Parametric studies consisted of three dimensionless variables including depth factors (d/H), friction angle (φ′) and embankment slope angle (β). Results were summarized in the form of the dimensionless stability number (su/γH(FS)) and the design chart and application were presented. In addition, the comparison of the solution of stability number with the limit equilibrium methods and the failure mechanisms were also proposed in this paper.
Analysis of embankment slope stability: the comparison of finite element limit analysis with limit equilibrium methods
Yingchaloenkitkhajorn Kongkit (Autor:in)
2019
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Using limit equilibrium concepts in finite element slope stability analysis
British Library Conference Proceedings | 1999
|Slope stability evaluation by limit equilibrium and finite element methods
British Library Conference Proceedings | 2005
|Slope-Stability Assessments Using Finite-Element Limit-Analysis Methods
Online Contents | 2016
|Slope-Stability Assessments Using Finite-Element Limit-Analysis Methods
Online Contents | 2017
|Limit Analysis versus Limit Equilibrium for Slope Stability
British Library Online Contents | 1999
|