Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Influence of Gas Pressure on the Failure Mechanism of Coal-like Burst-Prone Briquette and the Subsequent Geological Dynamic Disasters
Rock bursts and coal and gas outbursts are geodynamic disasters in underground coal mines. Laboratory testing of raw coal samples is the dominant research method for disaster prediction. However, the reliability of the experimental data is low due to the inconsistency of the mechanical properties of raw coal materials. The utilization of structural coal resources and the development of new coal-like materials are of significance for geodynamic disaster prediction and prevention. This paper studies the failure characteristics and dynamic disaster propensities of coal-like burst-prone briquettes under different gas pressures. A self-made multi-function rock–gas coupling experimental device was developed and burst-prone briquettes were synthesized, which greatly improved the efficiency and precision of the experimental data. The results showed that the burst proneness of the briquette was thoroughly reduced at a critical gas pressure of 0.4 MPa. When the gas pressure was close to 0.8 MPa, both the bearing capacity and the stored burst energy reduced significantly and the dynamic failure duration extended considerably, indicating the typical plastic-flow failure characteristics of coal and gas outbursts. The acoustic emission monitoring results showed that with the increase in gas pressure, the post-peak ringing and the AE energy ratio of coal samples increased, suggesting that the macroscopic damage pattern changed from bursting-ejecting of large pieces to stripping–shedding of small fragments adhered to mylonitic coal. In addition, the transformation and coexistence of coal failure modes were discussed from the perspectives of coal geology and gas migration. This study provides a new method for the scientific research of compound dynamic disaster prevention in burst coal mines with high gas contents.
Influence of Gas Pressure on the Failure Mechanism of Coal-like Burst-Prone Briquette and the Subsequent Geological Dynamic Disasters
Rock bursts and coal and gas outbursts are geodynamic disasters in underground coal mines. Laboratory testing of raw coal samples is the dominant research method for disaster prediction. However, the reliability of the experimental data is low due to the inconsistency of the mechanical properties of raw coal materials. The utilization of structural coal resources and the development of new coal-like materials are of significance for geodynamic disaster prediction and prevention. This paper studies the failure characteristics and dynamic disaster propensities of coal-like burst-prone briquettes under different gas pressures. A self-made multi-function rock–gas coupling experimental device was developed and burst-prone briquettes were synthesized, which greatly improved the efficiency and precision of the experimental data. The results showed that the burst proneness of the briquette was thoroughly reduced at a critical gas pressure of 0.4 MPa. When the gas pressure was close to 0.8 MPa, both the bearing capacity and the stored burst energy reduced significantly and the dynamic failure duration extended considerably, indicating the typical plastic-flow failure characteristics of coal and gas outbursts. The acoustic emission monitoring results showed that with the increase in gas pressure, the post-peak ringing and the AE energy ratio of coal samples increased, suggesting that the macroscopic damage pattern changed from bursting-ejecting of large pieces to stripping–shedding of small fragments adhered to mylonitic coal. In addition, the transformation and coexistence of coal failure modes were discussed from the perspectives of coal geology and gas migration. This study provides a new method for the scientific research of compound dynamic disaster prevention in burst coal mines with high gas contents.
Influence of Gas Pressure on the Failure Mechanism of Coal-like Burst-Prone Briquette and the Subsequent Geological Dynamic Disasters
Ying Chen (Autor:in) / Zhiwen Wang (Autor:in) / Qianjia Hui (Autor:in) / Zhaoju Zhang (Autor:in) / Zikai Zhang (Autor:in) / Bingjie Huo (Autor:in) / Yang Chen (Autor:in) / Jinliang Liu (Autor:in)
2023
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Comparison of Local Load Influence on Crack Evolution of Coal and Briquette Coal Samples
DOAJ | 2018
|Geological disasters : earthquakes and volcanoes
TIBKAT | 1979
|Experimental Study on the Performance of Rock Bolts in Coal Burst-Prone Mines
Online Contents | 2019
|