Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Analysis of Harmonic Resonance Characteristics in Grid-Connected LCL Virtual Synchronous Generator
The virtual synchronous generator (VSG), which emulates the essential behavior of the conventional synchronous generator, has attracted great attention. This paper proposes to analyze the harmonic resonance characteristics in VSG using the state-space model. The analysis is based on a full-order state-space small-signal model that fully considers the dynamic of the inner loops and the VSG-based outer power control loop. Participation analysis is used to point out the contributions of different states to the eigenvalues. Moreover, eigenvalue locus and singular value decomposition (SVD) are applied together to evaluate the impact of the inner loop parameters on the harmonic resonance characteristics around the LCL filter resonance frequency. The analysis indicates that the harmonic resonance instability is mainly caused by decreasing the proportional gains of the current loop and the voltage loop. Finally, extensive numerical simulation and experimental results are given to verify the validity of the theoretical analysis. Both the simulation and experimental results indicate that the voltage of the common coupling point is unstable after decreasing the proportional gains of the current and voltage controllers. As Kpc decreases from 5 to 0.4 or Kpv decreases from 0.6 to 0.2, the harmonic distortion factor (HDF) around the LCL filter resonance frequency increases. Furthermore, the consistency of simulation results, experimental results, and the theoretical analysis results is validated.
Analysis of Harmonic Resonance Characteristics in Grid-Connected LCL Virtual Synchronous Generator
The virtual synchronous generator (VSG), which emulates the essential behavior of the conventional synchronous generator, has attracted great attention. This paper proposes to analyze the harmonic resonance characteristics in VSG using the state-space model. The analysis is based on a full-order state-space small-signal model that fully considers the dynamic of the inner loops and the VSG-based outer power control loop. Participation analysis is used to point out the contributions of different states to the eigenvalues. Moreover, eigenvalue locus and singular value decomposition (SVD) are applied together to evaluate the impact of the inner loop parameters on the harmonic resonance characteristics around the LCL filter resonance frequency. The analysis indicates that the harmonic resonance instability is mainly caused by decreasing the proportional gains of the current loop and the voltage loop. Finally, extensive numerical simulation and experimental results are given to verify the validity of the theoretical analysis. Both the simulation and experimental results indicate that the voltage of the common coupling point is unstable after decreasing the proportional gains of the current and voltage controllers. As Kpc decreases from 5 to 0.4 or Kpv decreases from 0.6 to 0.2, the harmonic distortion factor (HDF) around the LCL filter resonance frequency increases. Furthermore, the consistency of simulation results, experimental results, and the theoretical analysis results is validated.
Analysis of Harmonic Resonance Characteristics in Grid-Connected LCL Virtual Synchronous Generator
Jingya Jiang (Autor:in) / Wei Wang (Autor:in) / Xuezhi Wu (Autor:in) / Fen Tang (Autor:in) / Zhengwen Yang (Autor:in) / Xiangjun Li (Autor:in)
2021
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
DOAJ | 2018
|Dynamic Modeling and Analysis of a Virtual Synchronous Generator with Supercapacitor
DOAJ | 2023
|Modelling, Implementation, and Assessment of Virtual Synchronous Generator in Power Systems
DOAJ | 2020
|