Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Identifying Human-Induced Spatial Differences of Soil Erosion Change in a Hilly Red Soil Region of Southern China
Soil erosion (SE) processes are closely related to natural conditions and human activities, posing a threat to environment and society. Identifying the human impact on regional SE changes is increasingly essential for pertinent SE management. Jiangxi province is studied here as a representative area of hilly-red-soil regions within southern China. The main objectives of this study were to investigate the changing trend of SE within Jiangxi and identify human impacts on regional SE change from the perspective of spatial differences, through a new approach based on a gravity-center model. Our results showed that SE status presented an overall amelioration from 1990 to 2015, while the average soil erosion modulus (SEM) declined from 864 to 281 Mg/(km2·a). Compared to the situation under human and natural impacts, human-induced spatial differences of SE change demonstrated that the western and northwest regions showed stronger negative effects; the southern region shifted towards negative effects; the northeast region presented a much weaker negative effect. Our results indicated that 4 cities with strong negative effects need more attention in further SE management suited to their local conditions and development, and also suggested that the approach based on a gravity-center has potential for identifying the human impact on regional SE change from the perspective of spatial patterns.
Identifying Human-Induced Spatial Differences of Soil Erosion Change in a Hilly Red Soil Region of Southern China
Soil erosion (SE) processes are closely related to natural conditions and human activities, posing a threat to environment and society. Identifying the human impact on regional SE changes is increasingly essential for pertinent SE management. Jiangxi province is studied here as a representative area of hilly-red-soil regions within southern China. The main objectives of this study were to investigate the changing trend of SE within Jiangxi and identify human impacts on regional SE change from the perspective of spatial differences, through a new approach based on a gravity-center model. Our results showed that SE status presented an overall amelioration from 1990 to 2015, while the average soil erosion modulus (SEM) declined from 864 to 281 Mg/(km2·a). Compared to the situation under human and natural impacts, human-induced spatial differences of SE change demonstrated that the western and northwest regions showed stronger negative effects; the southern region shifted towards negative effects; the northeast region presented a much weaker negative effect. Our results indicated that 4 cities with strong negative effects need more attention in further SE management suited to their local conditions and development, and also suggested that the approach based on a gravity-center has potential for identifying the human impact on regional SE change from the perspective of spatial patterns.
Identifying Human-Induced Spatial Differences of Soil Erosion Change in a Hilly Red Soil Region of Southern China
Dong Huang (Autor:in) / Xiaohuan Yang (Autor:in) / Hongyan Cai (Autor:in) / Zuolin Xiao (Autor:in) / Dongrui Han (Autor:in)
2019
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
DOAJ | 2015
|DOAJ | 2023
|Tillage Erosion Effect on Soil Hydrological Properties in a Hilly Landscape
Online Contents | 2017
|