Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Extraction of the discontinuity orientation from a digital surface model
The traditional field contact measurement for obtaining parameters of the rock mass discontinuity is of low efficiency and big workload, and the accuracy of the results are affected by human factors. In this paper a method is presented to automatically recognize the discontinuity based on the three dimensional (3D) digital surface model (DSM) of rock mass obtained with the digital photogrammetry and structure from motion (SFM) algorithm. The steps of rock mass DSM reconstruction include collecting rock mass images, matching image features based on the Scale-Invariant Feature Transform (SIFT) algorithm, reconstructing sparse point cloud, encrypting point cloud, and reconstructing the rock mass surface model. The main flow of the discontinuity recognition method include smoothing the DSM of rock mass, changing the searching radius and the angle threshold to split model plane, searching the discontinuity based on the regional growth principle, and fitting the discontinuity based on random sampling consistency to get the orientation. The method is applied to the underground experimental roadway in the Beishan area of Gansu, and the reconstruction of 3D digital surface model of roadway and the orientation acquisition of discontinuities are realized. The discontinuities are also mapped on the roadway model by groups. A comparison the results with those of the manual field measurement method and the existing discontinuity recognition software shows that the method proposed in this paper is of good accuracy and can provide a certain reference for engineering applications.
Extraction of the discontinuity orientation from a digital surface model
The traditional field contact measurement for obtaining parameters of the rock mass discontinuity is of low efficiency and big workload, and the accuracy of the results are affected by human factors. In this paper a method is presented to automatically recognize the discontinuity based on the three dimensional (3D) digital surface model (DSM) of rock mass obtained with the digital photogrammetry and structure from motion (SFM) algorithm. The steps of rock mass DSM reconstruction include collecting rock mass images, matching image features based on the Scale-Invariant Feature Transform (SIFT) algorithm, reconstructing sparse point cloud, encrypting point cloud, and reconstructing the rock mass surface model. The main flow of the discontinuity recognition method include smoothing the DSM of rock mass, changing the searching radius and the angle threshold to split model plane, searching the discontinuity based on the regional growth principle, and fitting the discontinuity based on random sampling consistency to get the orientation. The method is applied to the underground experimental roadway in the Beishan area of Gansu, and the reconstruction of 3D digital surface model of roadway and the orientation acquisition of discontinuities are realized. The discontinuities are also mapped on the roadway model by groups. A comparison the results with those of the manual field measurement method and the existing discontinuity recognition software shows that the method proposed in this paper is of good accuracy and can provide a certain reference for engineering applications.
Extraction of the discontinuity orientation from a digital surface model
Chengqiang XUAN (Autor:in) / Yangsong ZHANG (Autor:in) / Wentao XU (Autor:in)
2022
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
An Application of Stereophotogrammetry in Investigating Rock Discontinuity Orientation
Taylor & Francis Verlag | 2000
|Sampling bias of discontinuity orientation caused by linear sampling technique
Online Contents | 2003
|The influence of discontinuity orientation on the behaviour of tunnel
IuD Bahn | 2005
|Sampling bias of discontinuity orientation caused by linear sampling technique
British Library Online Contents | 2002
|Comparing discontinuity orientation data collected by terrestrial LiDAR and transit compass methods
Online Contents | 2014
|