Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
The Development of a Hydrological Drought Index for Lithuania
Recently, the number and intensity of hydrological droughts have been increasing; thus, it is necessary to identify and respond to them quickly. Since the primary hydrological data in Lithuania are water levels, and converting these data into discharge takes additional time, there is a need to develop a methodology or adapt these data to analyze and detect hydrological droughts. This paper examines the concept of the standardized water level index (SWLI) calculation, which is based on the standardized precipitation index (SPI) and streamflow drought index (SDI) methods. SDI and SWLI data were compared; SWLI was used to analyze the situation in the past and future. A total of 15 main sub-basins were considered, and the future discharge of three rivers was estimated; SWLI showed good compatibility with SDI. To better analyze droughts, the use of severe drought threshold values (SDTV) was suggested as some river data (especially those for small rivers) needed to be corrected due to dense riverine flora. The dry years and trends identified by SWLI are consistent with previous studies.
The Development of a Hydrological Drought Index for Lithuania
Recently, the number and intensity of hydrological droughts have been increasing; thus, it is necessary to identify and respond to them quickly. Since the primary hydrological data in Lithuania are water levels, and converting these data into discharge takes additional time, there is a need to develop a methodology or adapt these data to analyze and detect hydrological droughts. This paper examines the concept of the standardized water level index (SWLI) calculation, which is based on the standardized precipitation index (SPI) and streamflow drought index (SDI) methods. SDI and SWLI data were compared; SWLI was used to analyze the situation in the past and future. A total of 15 main sub-basins were considered, and the future discharge of three rivers was estimated; SWLI showed good compatibility with SDI. To better analyze droughts, the use of severe drought threshold values (SDTV) was suggested as some river data (especially those for small rivers) needed to be corrected due to dense riverine flora. The dry years and trends identified by SWLI are consistent with previous studies.
The Development of a Hydrological Drought Index for Lithuania
Serhii Nazarenko (Autor:in) / Jūratė Kriaučiūnienė (Autor:in) / Diana Šarauskienė (Autor:in) / Arvydas Povilaitis (Autor:in)
2023
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Future Hydrological Drought Risk Assessment Based on Nonstationary Joint Drought Management Index
DOAJ | 2019
|Identification of Hydrological Drought in Eastern China Using a Time-Dependent Drought Index
DOAJ | 2018
|