Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Effects of Habitat Filtering on Tree Growth and Mortality across Life Stages in an Old-Growth Temperate Forest
A demographic (growth and mortality) trade-off plays a central role in the assembly and dynamics of ecological communities and contributes to tree species’ coexistence. On the basis of field investigation data from the 2010 and 2015 censuses, we evaluated the degrees to which the relative growth rate (RGR) and mortality rate (MR) of saplings and large trees were related to habitat filtering for temperate tree species from a 9 ha forest dynamics plot. The results showed that the relationship between RGR and MR was stronger in saplings than that in large trees. In saplings, the total P (TP) and organic C (OC) of the soil had a significantly positive correlation with RGR. In large trees, volumetric water content had a significantly negative correlation with RGR. In saplings, the bulk density and available P had a significantly positive correlation with MR. In large trees, MR showed a significantly negative correlation with aspect and a significantly positive correlation with TP and OC. Principal component analysis showed that species–habitat association status significantly affected the demographic parameters. A linear regression analysis revealed that the process of habitat filtering contributed to the ontogenetic variation that controlled RGR and MR as the community transitioned from saplings to large trees. Moreover, water availability for large trees played a key role in this process in an old-growth temperate forest.
Effects of Habitat Filtering on Tree Growth and Mortality across Life Stages in an Old-Growth Temperate Forest
A demographic (growth and mortality) trade-off plays a central role in the assembly and dynamics of ecological communities and contributes to tree species’ coexistence. On the basis of field investigation data from the 2010 and 2015 censuses, we evaluated the degrees to which the relative growth rate (RGR) and mortality rate (MR) of saplings and large trees were related to habitat filtering for temperate tree species from a 9 ha forest dynamics plot. The results showed that the relationship between RGR and MR was stronger in saplings than that in large trees. In saplings, the total P (TP) and organic C (OC) of the soil had a significantly positive correlation with RGR. In large trees, volumetric water content had a significantly negative correlation with RGR. In saplings, the bulk density and available P had a significantly positive correlation with MR. In large trees, MR showed a significantly negative correlation with aspect and a significantly positive correlation with TP and OC. Principal component analysis showed that species–habitat association status significantly affected the demographic parameters. A linear regression analysis revealed that the process of habitat filtering contributed to the ontogenetic variation that controlled RGR and MR as the community transitioned from saplings to large trees. Moreover, water availability for large trees played a key role in this process in an old-growth temperate forest.
Effects of Habitat Filtering on Tree Growth and Mortality across Life Stages in an Old-Growth Temperate Forest
Daxiao Han (Autor:in) / Guangze Jin (Autor:in)
2022
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Radial Growth Patterns Associated with Tree Mortality in Nothofagus pumilio Forest
DOAJ | 2019
|