Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Water Balance of the Regulated Arid Lake as an Indicator of Climate Change and Anthropogenic Impact: The North (Small) Aral Sea Case Study
Inland waters in the endorheic basins of the arid zone are especially vulnerable to both climate-induced changes and anthropogenic influence. The North Aral Sea, which previously suffered a drastic shrinkage and partially recovered with the launch of the human-made Kokaral dam, is currently subject to significant inter-annual variability of its water volume. This study aimed to obtain insight into the modern water balance condition of the lake and to project the possible changes in it. A series of model simulation experiments were implemented based on three representative concentration pathway (RCP) scenarios with varying maximum lake surface levels, determined by the dam. Present-day dam conditions showed the possibility to retain the lake volume above 26 km under the RCP 2.6 and 6.0 scenarios. Simulations under the RCP 8.5 scenario revealed significant instability of the lake volume and a well-shown decrease in the outflow amount. A possible human-made increase in terms of the lake surface level up to 48.5 m.a.s.l. may allow for the retention of the volume in the range of 48–50 km in the RCP 2.6 case. The RCP 6.0 and 8.5 scenarios revealed a lake volume decrease and almost full cessation of the Kokaral outflow toward the end of the 21st century.
Water Balance of the Regulated Arid Lake as an Indicator of Climate Change and Anthropogenic Impact: The North (Small) Aral Sea Case Study
Inland waters in the endorheic basins of the arid zone are especially vulnerable to both climate-induced changes and anthropogenic influence. The North Aral Sea, which previously suffered a drastic shrinkage and partially recovered with the launch of the human-made Kokaral dam, is currently subject to significant inter-annual variability of its water volume. This study aimed to obtain insight into the modern water balance condition of the lake and to project the possible changes in it. A series of model simulation experiments were implemented based on three representative concentration pathway (RCP) scenarios with varying maximum lake surface levels, determined by the dam. Present-day dam conditions showed the possibility to retain the lake volume above 26 km under the RCP 2.6 and 6.0 scenarios. Simulations under the RCP 8.5 scenario revealed significant instability of the lake volume and a well-shown decrease in the outflow amount. A possible human-made increase in terms of the lake surface level up to 48.5 m.a.s.l. may allow for the retention of the volume in the range of 48–50 km in the RCP 2.6 case. The RCP 6.0 and 8.5 scenarios revealed a lake volume decrease and almost full cessation of the Kokaral outflow toward the end of the 21st century.
Water Balance of the Regulated Arid Lake as an Indicator of Climate Change and Anthropogenic Impact: The North (Small) Aral Sea Case Study
Alexander Izhitskiy (Autor:in) / Georgy Ayzel (Autor:in)
2023
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Climate change impact assessment on freshwater inflow into the Small Aral Sea
BASE | 2021
|Impact of climate change and anthropogenic pressure on the groundwater resources in arid environment
Online Contents | 2018
|British Library Conference Proceedings | 2012
|A change of Aral Sea's water area by satellite data
IEEE | 1993
|