Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
A Multi-Objective Demand/Generation Scheduling Model-Based Microgrid Energy Management System
In recent years, microgrids (MGs) have been developed to improve the overall management of the power network. This paper examines how a smart MG’s generation and demand sides are managed to improve the MG’s performance in order to minimize operating costs and emissions. A binary orientation search algorithm (BOSA)-based optimal demand side management (DSM) program using the load-shifting technique has been proposed, resulting in significant electricity cost savings. The proposed optimal DSM-based energy management strategy considers the MG’s economic and environmental indices to be the key objective functions. Single-objective particle swarm optimization (SOPSO) and multi-objective particle swarm optimization (MOPSO) were adopted in order to optimize MG performance in the presence of renewable energy resources (RERs) with a randomized natural behavior. A PSO algorithm was adopted due to the nonlinearity and complexity of the proposed problem. In addition, fuzzy-based mechanisms and a nonlinear sorting system were used to discover the optimal compromise given the collection of Pareto-front space solutions. To test the proposed method in a more realistic setting, the stochastic behavior of renewable units was also factored in. The simulation findings indicate that the proposed BOSA algorithm-based DSM had the lowest peak demand (88.4 kWh) compared to unscheduled demand (105 kWh); additionally, the operating costs were reduced by 23%, from 660 USD to 508 USD, and the emissions decreased from 840 kg to 725 kg, saving 13.7%.
A Multi-Objective Demand/Generation Scheduling Model-Based Microgrid Energy Management System
In recent years, microgrids (MGs) have been developed to improve the overall management of the power network. This paper examines how a smart MG’s generation and demand sides are managed to improve the MG’s performance in order to minimize operating costs and emissions. A binary orientation search algorithm (BOSA)-based optimal demand side management (DSM) program using the load-shifting technique has been proposed, resulting in significant electricity cost savings. The proposed optimal DSM-based energy management strategy considers the MG’s economic and environmental indices to be the key objective functions. Single-objective particle swarm optimization (SOPSO) and multi-objective particle swarm optimization (MOPSO) were adopted in order to optimize MG performance in the presence of renewable energy resources (RERs) with a randomized natural behavior. A PSO algorithm was adopted due to the nonlinearity and complexity of the proposed problem. In addition, fuzzy-based mechanisms and a nonlinear sorting system were used to discover the optimal compromise given the collection of Pareto-front space solutions. To test the proposed method in a more realistic setting, the stochastic behavior of renewable units was also factored in. The simulation findings indicate that the proposed BOSA algorithm-based DSM had the lowest peak demand (88.4 kWh) compared to unscheduled demand (105 kWh); additionally, the operating costs were reduced by 23%, from 660 USD to 508 USD, and the emissions decreased from 840 kg to 725 kg, saving 13.7%.
A Multi-Objective Demand/Generation Scheduling Model-Based Microgrid Energy Management System
Ali M. Jasim (Autor:in) / Basil H. Jasim (Autor:in) / Habib Kraiem (Autor:in) / Aymen Flah (Autor:in)
2022
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Multi-microgrid Energy Management Systems: Architecture, Communication, and Scheduling Strategies
DOAJ | 2021
|Multi-Objective Optimization of a Microgrid Considering the Uncertainty of Supply and Demand
DOAJ | 2021
|A real-time multi-objective HVAC load optimization integrated with home microgrid scheduling
American Institute of Physics | 2025
|