Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Modeling Static Behavior of Rockfill Materials Based on Generalized Plasticity Model
Rockfill materials are commonly used for dam construction. Establishing an effective model that can reasonably describe the mechanical properties of rockfill material is very important for the calculation of earth-rock dam engineering. Based on the generalized plasticity model of sand, a modified generalized plasticity model suitable for rockfill material is established by modifying the plastic modulus. Focusing on three types of stress paths (e.g., CT test, CP test, and CR test), the stress path adaptability of the modified generalized plasticity is studied. Simulation results show that the proposed model can well predict the strength characteristics while it underestimates the shrinkage characteristics of rockfill materials for constant P test. It is difficult for the generalized plasticity model to predict larger radial shrinkage strain for constant stress ratio tests. This shortcoming can be improved by employing a modified dilatancy equation. Finally, by introducing critical state theory and considering the effect of initial void ratio on plastic modulus, a state-dependent generalized plasticity model is proposed and verified by experiment of granite rockfill materials and TRM with different void ratios. These works covers the most common stress paths related to the construction of earth-rock dams and can capture static behavior of rockfill materials.
Modeling Static Behavior of Rockfill Materials Based on Generalized Plasticity Model
Rockfill materials are commonly used for dam construction. Establishing an effective model that can reasonably describe the mechanical properties of rockfill material is very important for the calculation of earth-rock dam engineering. Based on the generalized plasticity model of sand, a modified generalized plasticity model suitable for rockfill material is established by modifying the plastic modulus. Focusing on three types of stress paths (e.g., CT test, CP test, and CR test), the stress path adaptability of the modified generalized plasticity is studied. Simulation results show that the proposed model can well predict the strength characteristics while it underestimates the shrinkage characteristics of rockfill materials for constant P test. It is difficult for the generalized plasticity model to predict larger radial shrinkage strain for constant stress ratio tests. This shortcoming can be improved by employing a modified dilatancy equation. Finally, by introducing critical state theory and considering the effect of initial void ratio on plastic modulus, a state-dependent generalized plasticity model is proposed and verified by experiment of granite rockfill materials and TRM with different void ratios. These works covers the most common stress paths related to the construction of earth-rock dams and can capture static behavior of rockfill materials.
Modeling Static Behavior of Rockfill Materials Based on Generalized Plasticity Model
Shihai Bian (Autor:in) / Bo Wu (Autor:in) / Yongzheng Ma (Autor:in)
2019
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Application of a Generalized Plasticity Model to Ultra-High Rockfill Dam
British Library Conference Proceedings | 2010
|Modeling the behavior of rockfill
British Library Conference Proceedings | 2001
|