Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
A New Multi-Criteria Approach for Sustainable Material Selection Problem
Sustainable material selection is a crucial problem given the new demands of society and novel production strategies that consider the concepts of sustainability. Multi-criteria decision-making methods have been extensively used to help decision-makers select alternatives in different fields of knowledge. Nonetheless, these methods have been criticized due to the rank reversal problem, where the independence of the irrelevant alternative principle is violated after the initial decision problem is changed. Over the course of this study, we observed that the solutions that are proposed for this problem, in the context of sustainable material selection, are insufficient. Thus, we present a new material selection approach that is based on the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) method, which is immune to rank reversal. We also demonstrate the causes of rank reversal in the TOPSIS method, how the R-TOPSIS method was designed to solve them, and how it can be applied to sustainable material selection.
A New Multi-Criteria Approach for Sustainable Material Selection Problem
Sustainable material selection is a crucial problem given the new demands of society and novel production strategies that consider the concepts of sustainability. Multi-criteria decision-making methods have been extensively used to help decision-makers select alternatives in different fields of knowledge. Nonetheless, these methods have been criticized due to the rank reversal problem, where the independence of the irrelevant alternative principle is violated after the initial decision problem is changed. Over the course of this study, we observed that the solutions that are proposed for this problem, in the context of sustainable material selection, are insufficient. Thus, we present a new material selection approach that is based on the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) method, which is immune to rank reversal. We also demonstrate the causes of rank reversal in the TOPSIS method, how the R-TOPSIS method was designed to solve them, and how it can be applied to sustainable material selection.
A New Multi-Criteria Approach for Sustainable Material Selection Problem
Renan Felinto de Farias Aires (Autor:in) / Luciano Ferreira (Autor:in)
2022
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Emerald Group Publishing | 2021
|DOAJ | 2018
|A multi-criteria approach to contractor selection
Online Contents | 2002
|Criteria of Low Embodied Energy Material Selection for Sustainable Building Design
Springer Verlag | 2024
|A multi-criteria approach to contractor selection
Emerald Group Publishing | 2002
|