Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Synthetic demand data generation for individual electricity consumers: Inpainting
In this contribution we deal with the problem of producing “reasonable” data, when considering recorded energy consumption data, which are at certain sections incomplete and/or erroneous. This task is important, when energy providers employ prediction models for expected energy consumption, which are based on past recorded consumption data, which then of course should be reliable and valid. In a related contribution Yilmaz (2022), GAN-based methods for producing such “artificial data” have been investigated. In this contribution, we describe an alternative and complementary method based on signal inpainting, which has been successfully applied to audio processing Lieb and Stark (2018). After giving a short overview of the theory of proximity-based convex optimization, we describe and adapt an iterative inpainting scheme to our problem. The usefulness of this approach is demonstrated by analyzing real-world-data provided by a German energy supplier.
Synthetic demand data generation for individual electricity consumers: Inpainting
In this contribution we deal with the problem of producing “reasonable” data, when considering recorded energy consumption data, which are at certain sections incomplete and/or erroneous. This task is important, when energy providers employ prediction models for expected energy consumption, which are based on past recorded consumption data, which then of course should be reliable and valid. In a related contribution Yilmaz (2022), GAN-based methods for producing such “artificial data” have been investigated. In this contribution, we describe an alternative and complementary method based on signal inpainting, which has been successfully applied to audio processing Lieb and Stark (2018). After giving a short overview of the theory of proximity-based convex optimization, we describe and adapt an iterative inpainting scheme to our problem. The usefulness of this approach is demonstrated by analyzing real-world-data provided by a German energy supplier.
Synthetic demand data generation for individual electricity consumers: Inpainting
Dascha Dobrovolskij (Autor:in) / Hans-Georg Stark (Autor:in)
2024
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
DOAJ | 2022
|Rating the Participation of Electricity Consumers in Demand Response Events
BASE | 2020
|Managing Smart City Power Network by Shifting Electricity Consumers Demand
BASE | 2022
|Managing Smart City Power Network by Shifting Electricity Consumers Demand
BASE | 2021
|Demand based price determination for electricity consumers in private households
BASE | 2016
|