Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
The Effects of Fertilization on the Growth and Physiological Characteristics of Ginkgo biloba L.
Ginkgo biloba L. is one of the most extensively planted and productive commercial species in temperate areas around the world, but slow-growth is the most limiting factor for its utilization. Fertilization is one of the key technologies for high quality and high forest yield. To better understand the impacts of fertilization on Ginkgo productivity, the effects of fertilization treatments (single fertilizer and combined fertilizer) on growth, nutrient content in Ginkgo leaves, and photosynthesis characteristics were studied in a 10-year-old Ginkgo plantation over two years. The single factor experiments suggested that DBH (diameter at breast height), H (height), NSL (length of new shoots), and V (trunk volume) showed significant differences between the different levels of single nitrogen (N) or phosphate (P) fertilizer application. Orthogonal test results showed that the nine treatments all promoted the growth of Ginkgo, and the formula (N: 400 g·tree−1, P: 200 g·tree−1, potassium (K): 90 g·tree−1) was the most effective. Gs (stomatal conductance) and Pn (net photosynthesis rate) showed significant differences between the different amounts of single N or P fertilizer application, while single K fertilizer only affected Pn. Combined N, P, and K fertilizer had significant promoting effects on Ci (intercellular CO2 concentration), Gs and Pn. N and P contents in Ginkgo leaves showed significant differences between the different amounts of a single N fertilizer application. A single P fertilizer only improved foliar P contents in Ginkgo leaves. A single K fertilizer application improved N and K content in Ginkgo leaves. The effects of different N, P, and K fertilizer treatments on the nutrient content of Ginkgo leaves were different.
The Effects of Fertilization on the Growth and Physiological Characteristics of Ginkgo biloba L.
Ginkgo biloba L. is one of the most extensively planted and productive commercial species in temperate areas around the world, but slow-growth is the most limiting factor for its utilization. Fertilization is one of the key technologies for high quality and high forest yield. To better understand the impacts of fertilization on Ginkgo productivity, the effects of fertilization treatments (single fertilizer and combined fertilizer) on growth, nutrient content in Ginkgo leaves, and photosynthesis characteristics were studied in a 10-year-old Ginkgo plantation over two years. The single factor experiments suggested that DBH (diameter at breast height), H (height), NSL (length of new shoots), and V (trunk volume) showed significant differences between the different levels of single nitrogen (N) or phosphate (P) fertilizer application. Orthogonal test results showed that the nine treatments all promoted the growth of Ginkgo, and the formula (N: 400 g·tree−1, P: 200 g·tree−1, potassium (K): 90 g·tree−1) was the most effective. Gs (stomatal conductance) and Pn (net photosynthesis rate) showed significant differences between the different amounts of single N or P fertilizer application, while single K fertilizer only affected Pn. Combined N, P, and K fertilizer had significant promoting effects on Ci (intercellular CO2 concentration), Gs and Pn. N and P contents in Ginkgo leaves showed significant differences between the different amounts of a single N fertilizer application. A single P fertilizer only improved foliar P contents in Ginkgo leaves. A single K fertilizer application improved N and K content in Ginkgo leaves. The effects of different N, P, and K fertilizer treatments on the nutrient content of Ginkgo leaves were different.
The Effects of Fertilization on the Growth and Physiological Characteristics of Ginkgo biloba L.
Jing Guo (Autor:in) / Yaqiong Wu (Autor:in) / Bo Wang (Autor:in) / Yan Lu (Autor:in) / Fuliang Cao (Autor:in) / Guibin Wang (Autor:in)
2016
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Sex-Related Differences of Ginkgo biloba in Growth Traits and Wood Properties
DOAJ | 2023
|Physiological and Genetic Analysis of Leaves from the Resprouters of an Old Ginkgo biloba Tree
DOAJ | 2021
|Evapotranspiration Characteristics and Soil Moisture Conditions of Ginkgo Biloba in Urban Gardens
DOAJ | 2023
|Effects of Ginkgo Biloba Extract on Liver Protection for Type 2 Diabetic Rats
British Library Conference Proceedings | 2013
|