Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Comparing Activation Functions in Modeling Shoreline Variation Using Multilayer Perceptron Neural Network
The study has modeled shoreline changes by using a multilayer perceptron (MLP) neural network with the data collected from five beaches in southern Taiwan. The data included aerial survey maps of the Forestry Bureau for years 1982, 2002, and 2006, which served as predictors, while the unmanned aerial vehicle (UAV) surveyed data of 2019 served as the respondent. The MLP was configured using five different activation functions with the aim of evaluating their significance. These functions were Identity, Tahn, Logistic, Exponential, and Sine Functions. The results have shown that the performance of an MLP model may be affected by the choice of an activation function. Logistic and the Tahn activation functions outperformed the other models, with Logistic performing best in three beaches and Tahn having the rest. These findings suggest that the application of machine learning to shoreline changes should be accompanied by an extensive evaluation of the different activation functions.
Comparing Activation Functions in Modeling Shoreline Variation Using Multilayer Perceptron Neural Network
The study has modeled shoreline changes by using a multilayer perceptron (MLP) neural network with the data collected from five beaches in southern Taiwan. The data included aerial survey maps of the Forestry Bureau for years 1982, 2002, and 2006, which served as predictors, while the unmanned aerial vehicle (UAV) surveyed data of 2019 served as the respondent. The MLP was configured using five different activation functions with the aim of evaluating their significance. These functions were Identity, Tahn, Logistic, Exponential, and Sine Functions. The results have shown that the performance of an MLP model may be affected by the choice of an activation function. Logistic and the Tahn activation functions outperformed the other models, with Logistic performing best in three beaches and Tahn having the rest. These findings suggest that the application of machine learning to shoreline changes should be accompanied by an extensive evaluation of the different activation functions.
Comparing Activation Functions in Modeling Shoreline Variation Using Multilayer Perceptron Neural Network
Je-Chian Chen (Autor:in) / Yu-Min Wang (Autor:in)
2020
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Predicting smoothed loading spectra using a combined multilayer perceptron neural network
British Library Online Contents | 2006
|