Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
The role of terrain-mediated hydroclimate in vegetation recovery after wildfire
Throughout communities and ecosystems both within and downstream of mountain forests, there is an increasing risk of wildfire. After a wildfire, stakeholder management will vary depending on the rate and spatial heterogeneity of forest re-establishment. However, forest re-establishment and recovery after a wildfire is closely linked to interactions between the temporal evolution of plant-available water (PAW) and spatial patterns in available energy. Therefore, we propose a conceptual model that describes spatial heterogeneity in long-term watershed recovery rate as a function of topographically-mediated interactions between available energy and the movement of water in the subsurface (i.e. subsurface hydrologic redistribution). As vegetation becomes re-established across a burned landscape in response to topographic and subsurface controls on water and energy, canopies shade the ground surface and reduce wind speed creating positive feedbacks that increase PAW. Furthermore, slope aspect differentially impacts the spatial patterns in regrowth and re-establishment. South aspect slopes receive high solar radiation, and consequently are warmer and drier, with lower standing biomass and greater drought stress and mortality compared to north aspect slopes. To date, most assessments of these impacts have taken a bulk approach, or an implicitly one-dimensional conceptual approach that does not include spatial heterogeneity in hydroclimate influenced by topography and vegetation. The presented conceptual model sets a starting point to further our understanding of the spatio-temporal evolution of PAW storage, energy availability, and vegetation re-establishment and survival in forested catchments after a wildfire. The model also provides a template for collaboration with diverse stakeholders to aid the co-production of next generation management tools to mitigate the negative impacts of future wildfires.
The role of terrain-mediated hydroclimate in vegetation recovery after wildfire
Throughout communities and ecosystems both within and downstream of mountain forests, there is an increasing risk of wildfire. After a wildfire, stakeholder management will vary depending on the rate and spatial heterogeneity of forest re-establishment. However, forest re-establishment and recovery after a wildfire is closely linked to interactions between the temporal evolution of plant-available water (PAW) and spatial patterns in available energy. Therefore, we propose a conceptual model that describes spatial heterogeneity in long-term watershed recovery rate as a function of topographically-mediated interactions between available energy and the movement of water in the subsurface (i.e. subsurface hydrologic redistribution). As vegetation becomes re-established across a burned landscape in response to topographic and subsurface controls on water and energy, canopies shade the ground surface and reduce wind speed creating positive feedbacks that increase PAW. Furthermore, slope aspect differentially impacts the spatial patterns in regrowth and re-establishment. South aspect slopes receive high solar radiation, and consequently are warmer and drier, with lower standing biomass and greater drought stress and mortality compared to north aspect slopes. To date, most assessments of these impacts have taken a bulk approach, or an implicitly one-dimensional conceptual approach that does not include spatial heterogeneity in hydroclimate influenced by topography and vegetation. The presented conceptual model sets a starting point to further our understanding of the spatio-temporal evolution of PAW storage, energy availability, and vegetation re-establishment and survival in forested catchments after a wildfire. The model also provides a template for collaboration with diverse stakeholders to aid the co-production of next generation management tools to mitigate the negative impacts of future wildfires.
The role of terrain-mediated hydroclimate in vegetation recovery after wildfire
Ryan W Webb (Autor:in) / Marcy E Litvak (Autor:in) / Paul D Brooks (Autor:in)
2023
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Diverse responses of vegetation to hydroclimate across temporal scales in a humid subtropical region
DOAJ | 2021
|DOAJ | 2020
|Improving Thematic Mapper Based Classification of Wildfire Induced Vegetation Mortality
Online Contents | 1997
|