Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Improved Recovery of Overloaded Anaerobic Batch Reactors by Graphene Oxide
Anaerobic digestion reactors may suffer from acidification when overloading occurs. Carbon-based materials are amended to mitigate the souring effects of excessive loading. This study aims to test if graphene oxide (GO) helps overloaded anaerobic reactors recover faster. Batch tests were conducted following a fed-batch strategy at different GO levels (0, 10, and 20 mg GO per g of volatile solid (VS)) and different inoculum substrate ratios (ISRs) of 2, 1, and 0.75 based on VS. While an ISR of 2 was initially applied, the ISR was decreased to 1 and 0.75 in two parallel sets of experiments to simulate overloading conditions at the fourth feeding cycle. Lastly, an ISR of 2 was restored in all assays. First-order model kinetic constants confirmed a significant (p < 0.05) effect by GO from the third feed on. Although the GO-amended assays did not alleviate the acidification effects, during the final phase the kinetic constants reached values similar to or even above the controls (without GO). Moreover, a GO concentration up to 20 mgGO/gVS had no impact on FOS/TAC. Overall, this study broadens the understanding of the design and operation of anaerobic reactors amended with GO.
Improved Recovery of Overloaded Anaerobic Batch Reactors by Graphene Oxide
Anaerobic digestion reactors may suffer from acidification when overloading occurs. Carbon-based materials are amended to mitigate the souring effects of excessive loading. This study aims to test if graphene oxide (GO) helps overloaded anaerobic reactors recover faster. Batch tests were conducted following a fed-batch strategy at different GO levels (0, 10, and 20 mg GO per g of volatile solid (VS)) and different inoculum substrate ratios (ISRs) of 2, 1, and 0.75 based on VS. While an ISR of 2 was initially applied, the ISR was decreased to 1 and 0.75 in two parallel sets of experiments to simulate overloading conditions at the fourth feeding cycle. Lastly, an ISR of 2 was restored in all assays. First-order model kinetic constants confirmed a significant (p < 0.05) effect by GO from the third feed on. Although the GO-amended assays did not alleviate the acidification effects, during the final phase the kinetic constants reached values similar to or even above the controls (without GO). Moreover, a GO concentration up to 20 mgGO/gVS had no impact on FOS/TAC. Overall, this study broadens the understanding of the design and operation of anaerobic reactors amended with GO.
Improved Recovery of Overloaded Anaerobic Batch Reactors by Graphene Oxide
Michele Ponzelli (Autor:in) / Hiep Nguyen (Autor:in) / Jörg E. Drewes (Autor:in) / Konrad Koch (Autor:in)
2023
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Simultaneous Removal of Arsenic and Nitrate in Anaerobic Batch Reactors
Springer Verlag | 2018
|Anaerobic Digestion and Methane Generation Potential of Rose Residue in Batch Reactors
Online Contents | 2004
|ASCE | 2021
|Discussion on Overloaded Bridges
ASCE | 2021
|