Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Spatial Disaggregation of Areal Rainfall Using Two Different Artificial Neural Networks Models
The objective of this study is to develop artificial neural network (ANN) models, including multilayer perceptron (MLP) and Kohonen self-organizing feature map (KSOFM), for spatial disaggregation of areal rainfall in the Wi-stream catchment, an International Hydrological Program (IHP) representative catchment, in South Korea. A three-layer MLP model, using three training algorithms, was used to estimate areal rainfall. The Levenberg–Marquardt training algorithm was found to be more sensitive to the number of hidden nodes than were the conjugate gradient and quickprop training algorithms using the MLP model. Results showed that the networks structures of 11-5-1 (conjugate gradient and quickprop) and 11-3-1 (Levenberg-Marquardt) were the best for estimating areal rainfall using the MLP model. The networks structures of 1-5-11 (conjugate gradient and quickprop) and 1-3-11 (Levenberg–Marquardt), which are the inverse networks for estimating areal rainfall using the best MLP model, were identified for spatial disaggregation of areal rainfall using the MLP model. The KSOFM model was compared with the MLP model for spatial disaggregation of areal rainfall. The MLP and KSOFM models could disaggregate areal rainfall into individual point rainfall with spatial concepts.
Spatial Disaggregation of Areal Rainfall Using Two Different Artificial Neural Networks Models
The objective of this study is to develop artificial neural network (ANN) models, including multilayer perceptron (MLP) and Kohonen self-organizing feature map (KSOFM), for spatial disaggregation of areal rainfall in the Wi-stream catchment, an International Hydrological Program (IHP) representative catchment, in South Korea. A three-layer MLP model, using three training algorithms, was used to estimate areal rainfall. The Levenberg–Marquardt training algorithm was found to be more sensitive to the number of hidden nodes than were the conjugate gradient and quickprop training algorithms using the MLP model. Results showed that the networks structures of 11-5-1 (conjugate gradient and quickprop) and 11-3-1 (Levenberg-Marquardt) were the best for estimating areal rainfall using the MLP model. The networks structures of 1-5-11 (conjugate gradient and quickprop) and 1-3-11 (Levenberg–Marquardt), which are the inverse networks for estimating areal rainfall using the best MLP model, were identified for spatial disaggregation of areal rainfall using the MLP model. The KSOFM model was compared with the MLP model for spatial disaggregation of areal rainfall. The MLP and KSOFM models could disaggregate areal rainfall into individual point rainfall with spatial concepts.
Spatial Disaggregation of Areal Rainfall Using Two Different Artificial Neural Networks Models
Sungwon Kim (Autor:in) / Vijay P. Singh (Autor:in)
2015
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Rainfall Disaggregation Using Artificial Neural Networks
British Library Online Contents | 2000
|TECHNICAL PAPERS - Rainfall Disaggregation Using Artificial Neural Networks
Online Contents | 2000
|Training Artificial Neural Networks to Perform Rainfall Disaggregation
British Library Online Contents | 2001
|TECHNICAL PAPERS - Training Artificial Neural Networks to Perform Rainfall Disaggregation
Online Contents | 2001
|Evaluation of an artificial neural network rainfall disaggregation model
British Library Conference Proceedings | 2002
|