Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Land Use Optimization and Carbon Storage Estimation in the Yellow River Basin, China
Urban development and coal extraction have caused conflicts regarding production, living, and ecological lands in the Yellow River basin. Here, a coupled genetic algorithm–patch generating land use simulation InVEST model was constructed to optimize land use/land cover (LULC) and simulate carbon storage changes. This study shows that the LULC changed dramatically from 2010 to 2020 in an area that accounts for 31.96% of the area of the Yellow River basin. Inappropriate land use conversion and encroachment have reduced carbon storage by 2.92 × 106 t, destroying the stability of the ecosystem. The development of cities has encroached on cultivated land, which may have affected the region’s food security. Following LULC optimization, ecological and cultivated lands are gradually being restored, and the transition between the different lands tends to be orderly, resulting in an increase of 24.84 × 106 t in carbon storage. The relationship between LULC and carbon storage shows that the high carbon intensity of woodland, grassland, and cultivated land is crucial to ensuring regional carbon balance. For the Yellow River basin, necessary environmental protection measures are the key to achieving high-quality economic development. This study can provide guidance for decision-makers in formulating ecosystem restoration plans.
Land Use Optimization and Carbon Storage Estimation in the Yellow River Basin, China
Urban development and coal extraction have caused conflicts regarding production, living, and ecological lands in the Yellow River basin. Here, a coupled genetic algorithm–patch generating land use simulation InVEST model was constructed to optimize land use/land cover (LULC) and simulate carbon storage changes. This study shows that the LULC changed dramatically from 2010 to 2020 in an area that accounts for 31.96% of the area of the Yellow River basin. Inappropriate land use conversion and encroachment have reduced carbon storage by 2.92 × 106 t, destroying the stability of the ecosystem. The development of cities has encroached on cultivated land, which may have affected the region’s food security. Following LULC optimization, ecological and cultivated lands are gradually being restored, and the transition between the different lands tends to be orderly, resulting in an increase of 24.84 × 106 t in carbon storage. The relationship between LULC and carbon storage shows that the high carbon intensity of woodland, grassland, and cultivated land is crucial to ensuring regional carbon balance. For the Yellow River basin, necessary environmental protection measures are the key to achieving high-quality economic development. This study can provide guidance for decision-makers in formulating ecosystem restoration plans.
Land Use Optimization and Carbon Storage Estimation in the Yellow River Basin, China
Furui Xi (Autor:in) / Gang Lin (Autor:in) / Yanan Zhao (Autor:in) / Xiang Li (Autor:in) / Zhiyu Chen (Autor:in) / Chenglong Cao (Autor:in)
2023
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Baseflow estimation in typical catchments in the Yellow River Basin, China
DOAJ | 2021
|Water Management in the Yellow River Basin of China
UB Braunschweig | 2021
|Meeting the Basin Closure of the Yellow River in China
Online Contents | 2008
|