Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Impacts and depositional behaviors of debris flows on natural boulder-negative Poisson's ratio anchor cable baffles
The impacts of natural boulders carried by debris flows pose serious risks to the safety and reliability of structures and buildings. Natural boulders can be highly random and unpredictable. Consequently, boulder control during debris flows is crucial but difficult. Herein, an eco-friendly control system featuring anchoring natural boulders (NBs) with (negative Poisson's ratio) NPR anchor cables is proposed to form an NB-NPR baffle. A series of flume experiments are conducted to verify the effect of NB-NPR baffles on controlling debris flow impact. The deployment of NB-NPR baffles substantially influences the kinematic behavior of a debris flow, primarily in the form of changes in the depositional properties and impact intensities. The results show that the NB-NPR baffle matrix successfully controls boulder mobility and exhibits positive feedback on solid particle deposition. The NB-NPR baffle group exhibits a reduction in peak impact force ranging from 29% to 79% compared to that of the control group in the basic experiment. The NPR anchor cables play a significant role in the NB-NPR baffle by demonstrating particular characteristics, including consistent resistance, large deformation, and substantial energy absorption. The NB-NPR baffle innovatively utilizes the natural boulders in a debris flow gully by converting destructive boulders into constructive boulders. Overall, this research serves as a basis for future field experiments and applications.
Impacts and depositional behaviors of debris flows on natural boulder-negative Poisson's ratio anchor cable baffles
The impacts of natural boulders carried by debris flows pose serious risks to the safety and reliability of structures and buildings. Natural boulders can be highly random and unpredictable. Consequently, boulder control during debris flows is crucial but difficult. Herein, an eco-friendly control system featuring anchoring natural boulders (NBs) with (negative Poisson's ratio) NPR anchor cables is proposed to form an NB-NPR baffle. A series of flume experiments are conducted to verify the effect of NB-NPR baffles on controlling debris flow impact. The deployment of NB-NPR baffles substantially influences the kinematic behavior of a debris flow, primarily in the form of changes in the depositional properties and impact intensities. The results show that the NB-NPR baffle matrix successfully controls boulder mobility and exhibits positive feedback on solid particle deposition. The NB-NPR baffle group exhibits a reduction in peak impact force ranging from 29% to 79% compared to that of the control group in the basic experiment. The NPR anchor cables play a significant role in the NB-NPR baffle by demonstrating particular characteristics, including consistent resistance, large deformation, and substantial energy absorption. The NB-NPR baffle innovatively utilizes the natural boulders in a debris flow gully by converting destructive boulders into constructive boulders. Overall, this research serves as a basis for future field experiments and applications.
Impacts and depositional behaviors of debris flows on natural boulder-negative Poisson's ratio anchor cable baffles
Feifei Zhao (Autor:in) / Manchao He (Autor:in) / Qiru Sui (Autor:in) / Zhigang Tao (Autor:in)
2025
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Elsevier | 2025
|DOAJ | 2023
|NEGATIVE POISSON'S RATIO ROTARY ENLARGED SQUARE PERFORATED PLATE ARRAY ANCHOR ROD DEVICE
Europäisches Patentamt | 2023
|